Activation of mTORC1 and c-Jun by Prohibitin1 loss in Schwann cells may link mitochondrial dysfunction to demyelination

  1. Gustavo Della Flora Nunes
  2. Emma R Wilson  Is a corresponding author
  3. Edward Hurley  Is a corresponding author
  4. Bin He
  5. Bert W O'Malley  Is a corresponding author
  6. Yannick Poitelon  Is a corresponding author
  7. Lawrence Wrabetz  Is a corresponding author
  8. M Laura Feltri  Is a corresponding author
  1. SUNY Buffalo, United States
  2. Houston Methodist Hospital, United States
  3. Baylor College of Medicine, United States
  4. Albany Medical College, United States

Abstract

Schwann cell (SC) mitochondria are quickly emerging as an important regulator of myelin maintenance in the peripheral nervous system (PNS). However, the mechanisms underlying demyelination in the context of mitochondrial dysfunction in the PNS are incompletely understood. We recently showed that conditional ablation of the mitochondrial protein Prohibitin 1 (PHB1) in SCs causes a severe and fast progressing demyelinating peripheral neuropathy in mice, but the mechanism that causes failure of myelin maintenance remained unknown. Here, we report that mTORC1 and c-Jun are continuously activated in the absence of Phb1, likely as part of the SC response to mitochondrial damage. Moreover, we demonstrate that these pathways are involved in the demyelination process, and that inhibition of mTORC1 using rapamycin partially rescues the demyelinating pathology. Therefore, we propose that mTORC1 and c-Jun may play a critical role as executioners of demyelination in the context of perturbations to SC mitochondria.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Gustavo Della Flora Nunes

    Departments of Biochemistry, SUNY Buffalo, Buffalo, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9323-3556
  2. Emma R Wilson

    Departments of Biochemistry, SUNY Buffalo, Buffalo, United States
    For correspondence
    ewilson5@buffalo.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8069-0173
  3. Edward Hurley

    Departments of Biochemistry and Neurology, SUNY Buffalo, Buffalo, United States
    For correspondence
    edwardhu@buffalo.edu
    Competing interests
    The authors declare that no competing interests exist.
  4. Bin He

    Immunobiology & Transplant Science Center and Department of Surgery,, Houston Methodist Hospital, Houston, TX, 77030, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Bert W O'Malley

    Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States
    For correspondence
    berto@bcm.edu
    Competing interests
    The authors declare that no competing interests exist.
  6. Yannick Poitelon

    Dept of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, United States
    For correspondence
    poitely@amc.edu
    Competing interests
    The authors declare that no competing interests exist.
  7. Lawrence Wrabetz

    Neurology, SUNY Buffalo, Buffalo, United States
    For correspondence
    lwrabetz@buffalo.edu
    Competing interests
    The authors declare that no competing interests exist.
  8. M Laura Feltri

    Departments of Biochemistry and Neurology, SUNY Buffalo, Buffalo, United States
    For correspondence
    mlfeltri@buffalo.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2276-9182

Funding

National Institute of Neurological Disorders and Stroke (R01NS100464)

  • M Laura Feltri

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures have been approved by the Institutional Animal Care and Use Committee (IACUC) of the Roswell Park Cancer Institute (Buffalo-NY, USA), and followed the guidelines stablished by the NIH's Guide for the Care and Use of Laboratory Animals and the regulations in place at the University at Buffalo (Buffalo-NY, USA).

Copyright

© 2021, Della Flora Nunes et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 272
    downloads

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gustavo Della Flora Nunes
  2. Emma R Wilson
  3. Edward Hurley
  4. Bin He
  5. Bert W O'Malley
  6. Yannick Poitelon
  7. Lawrence Wrabetz
  8. M Laura Feltri
(2021)
Activation of mTORC1 and c-Jun by Prohibitin1 loss in Schwann cells may link mitochondrial dysfunction to demyelination
eLife 10:e66278.
https://doi.org/10.7554/eLife.66278

Share this article

https://doi.org/10.7554/eLife.66278

Further reading

    1. Neuroscience
    Jakob Rupert, Dragomir Milovanovic
    Insight

    By influencing calcium homeostasis, local protein synthesis and the endoplasmic reticulum, a small protein called Rab10 emerges as a crucial cytoplasmic regulator of neuropeptide secretion.

    1. Neuroscience
    Brian C Ruyle, Sarah Masud ... Jose A Morón
    Research Article

    Millions of Americans suffering from Opioid Use Disorders face a high risk of fatal overdose due to opioid-induced respiratory depression (OIRD). Fentanyl, a powerful synthetic opioid, is a major contributor to the rising rates of overdose deaths. Reversing fentanyl overdoses has proved challenging due to its high potency and the rapid onset of OIRD. We assessed the contributions of central and peripheral mu opioid receptors (MORs) in mediating fentanyl-induced physiological responses. The peripherally restricted MOR antagonist naloxone methiodide (NLXM) both prevented and reversed OIRD to a degree comparable to that of naloxone (NLX), indicating substantial involvement of peripheral MORs to OIRD. Interestingly, NLXM-mediated OIRD reversal did not produce aversive behaviors observed after NLX. We show that neurons in the nucleus of the solitary tract (nTS), the first central synapse of peripheral afferents, exhibit a biphasic activity profile following fentanyl exposure. NLXM pretreatment attenuates this activity, suggesting that these responses are mediated by peripheral MORs. Together, these findings establish a critical role for peripheral MORs, including ascending inputs to the nTS, as sites of dysfunction during OIRD. Furthermore, selective peripheral MOR antagonism could be a promising therapeutic strategy for managing OIRD by sparing CNS-driven acute opioid-associated withdrawal and aversion observed after NLX.