Activation of mTORC1 and c-Jun by Prohibitin1 loss in Schwann cells may link mitochondrial dysfunction to demyelination

  1. Gustavo Della Flora Nunes
  2. Emma R Wilson  Is a corresponding author
  3. Edward Hurley  Is a corresponding author
  4. Bin He
  5. Bert W O'Malley  Is a corresponding author
  6. Yannick Poitelon  Is a corresponding author
  7. Lawrence Wrabetz  Is a corresponding author
  8. M Laura Feltri  Is a corresponding author
  1. SUNY Buffalo, United States
  2. Houston Methodist Hospital, United States
  3. Baylor College of Medicine, United States
  4. Albany Medical College, United States

Abstract

Schwann cell (SC) mitochondria are quickly emerging as an important regulator of myelin maintenance in the peripheral nervous system (PNS). However, the mechanisms underlying demyelination in the context of mitochondrial dysfunction in the PNS are incompletely understood. We recently showed that conditional ablation of the mitochondrial protein Prohibitin 1 (PHB1) in SCs causes a severe and fast progressing demyelinating peripheral neuropathy in mice, but the mechanism that causes failure of myelin maintenance remained unknown. Here, we report that mTORC1 and c-Jun are continuously activated in the absence of Phb1, likely as part of the SC response to mitochondrial damage. Moreover, we demonstrate that these pathways are involved in the demyelination process, and that inhibition of mTORC1 using rapamycin partially rescues the demyelinating pathology. Therefore, we propose that mTORC1 and c-Jun may play a critical role as executioners of demyelination in the context of perturbations to SC mitochondria.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Gustavo Della Flora Nunes

    Departments of Biochemistry, SUNY Buffalo, Buffalo, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9323-3556
  2. Emma R Wilson

    Departments of Biochemistry, SUNY Buffalo, Buffalo, United States
    For correspondence
    ewilson5@buffalo.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8069-0173
  3. Edward Hurley

    Departments of Biochemistry and Neurology, SUNY Buffalo, Buffalo, United States
    For correspondence
    edwardhu@buffalo.edu
    Competing interests
    The authors declare that no competing interests exist.
  4. Bin He

    Immunobiology & Transplant Science Center and Department of Surgery,, Houston Methodist Hospital, Houston, TX, 77030, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Bert W O'Malley

    Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States
    For correspondence
    berto@bcm.edu
    Competing interests
    The authors declare that no competing interests exist.
  6. Yannick Poitelon

    Dept of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, United States
    For correspondence
    poitely@amc.edu
    Competing interests
    The authors declare that no competing interests exist.
  7. Lawrence Wrabetz

    Neurology, SUNY Buffalo, Buffalo, United States
    For correspondence
    lwrabetz@buffalo.edu
    Competing interests
    The authors declare that no competing interests exist.
  8. M Laura Feltri

    Departments of Biochemistry and Neurology, SUNY Buffalo, Buffalo, United States
    For correspondence
    mlfeltri@buffalo.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2276-9182

Funding

National Institute of Neurological Disorders and Stroke (R01NS100464)

  • M Laura Feltri

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures have been approved by the Institutional Animal Care and Use Committee (IACUC) of the Roswell Park Cancer Institute (Buffalo-NY, USA), and followed the guidelines stablished by the NIH's Guide for the Care and Use of Laboratory Animals and the regulations in place at the University at Buffalo (Buffalo-NY, USA).

Copyright

© 2021, Della Flora Nunes et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,592
    views
  • 269
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gustavo Della Flora Nunes
  2. Emma R Wilson
  3. Edward Hurley
  4. Bin He
  5. Bert W O'Malley
  6. Yannick Poitelon
  7. Lawrence Wrabetz
  8. M Laura Feltri
(2021)
Activation of mTORC1 and c-Jun by Prohibitin1 loss in Schwann cells may link mitochondrial dysfunction to demyelination
eLife 10:e66278.
https://doi.org/10.7554/eLife.66278

Share this article

https://doi.org/10.7554/eLife.66278

Further reading

    1. Neuroscience
    Hailin Ai, Weiru Lin ... Peng Zhang
    Research Article

    Although parallel processing has been extensively studied in the low-level geniculostriate pathway and the high-level dorsal and ventral visual streams, less is known at the intermediate-level visual areas. In this study, we employed high-resolution fMRI at 7T to investigate the columnar and laminar organizations for color, disparity, and naturalistic texture in the human secondary visual cortex (V2), and their informational connectivity with lower- and higher-order visual areas. Although fMRI activations in V2 showed reproducible interdigitated color-selective thin and disparity-selective thick ‘stripe’ columns, we found no clear evidence of columnar organization for naturalistic textures. Cortical depth-dependent analyses revealed the strongest color-selectivity in the superficial layers of V2, along with both feedforward and feedback informational connectivity with V1 and V4. Disparity selectivity was similar across different cortical depths of V2, which showed significant feedforward and feedback connectivity with V1 and V3ab. Interestingly, the selectivity for naturalistic texture was strongest in the deep layers of V2, with significant feedback connectivity from V4. Thus, while local circuitry within cortical columns is crucial for processing color and disparity information, feedback signals from V4 are involved in generating the selectivity for naturalistic textures in area V2.

    1. Neuroscience
    Kristin Nordin, Robin Pedersen ... Alireza Salami
    Research Article

    The hippocampus is a complex structure critically involved in numerous behavior-regulating systems. In young adults, multiple overlapping spatial modes along its longitudinal and transverse axes describe the organization of its functional integration with neocortex, extending the traditional framework emphasizing functional differences between sharply segregated hippocampal subregions. Yet, it remains unknown whether these modes (i.e. gradients) persist across the adult human lifespan, and relate to memory and molecular markers associated with brain function and cognition. In two independent samples, we demonstrate that the principal anteroposterior and second-order, mid-to-anterior/posterior hippocampal modes of neocortical functional connectivity, representing distinct dimensions of macroscale cortical organization, manifest across the adult lifespan. Specifically, individual differences in topography of the second-order gradient predicted episodic memory and mirrored dopamine D1 receptor distribution, capturing shared functional and molecular organization. Older age was associated with less distinct transitions along gradients (i.e. increased functional homogeneity). Importantly, a youth-like gradient profile predicted preserved episodic memory – emphasizing age-related gradient dedifferentiation as a marker of cognitive decline. Our results underscore a critical role of mapping multidimensional hippocampal organization in understanding the neural circuits that support memory across the adult lifespan.