Stability of neocortical synapses across sleep and wake states during the critical period in rats

  1. Brian A Cary
  2. Gina G Turrigiano  Is a corresponding author
  1. Brandeis University, United States

Abstract

Sleep is important for brain plasticity, but its exact function remains mysterious. An influential but controversial idea is that a crucial function of sleep is to drive widespread downscaling of excitatory synaptic strengths. Here we used real-time sleep classification, ex vivo measurements of postsynaptic strength, and in vivo optogenetic monitoring of thalamocortical synaptic efficacy to ask whether sleep and wake states can constitutively drive changes in synaptic strength within the neocortex of juvenile rats. We found that miniature EPSC amplitudes onto L4 and L2/3 pyramidal neurons were stable across sleep and wake dense epochs in both primary visual (V1) and prefrontal cortex (PFC). Further, chronic monitoring of thalamocortical synaptic efficacy in V1 of freely behaving animals revealed stable responses across even prolonged periods of natural sleep and wake. Together these data demonstrate that sleep does not drive widespread downscaling of synaptic strengths during the highly plastic critical period in juvenile animals. Whether this remarkable stability across sleep and wake generalizes to the fully mature nervous system remains to be seen.

Data availability

Processed datasets and all figure data have been uploaded to Figshare (https://figshare.com/projects/Cary_et_al_2021_Elife_Submission/95867)

Article and author information

Author details

  1. Brian A Cary

    Department of Biology, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1759-164X
  2. Gina G Turrigiano

    Department of Biology, Brandeis University, Waltham, United States
    For correspondence
    turrigiano@brandeis.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4476-4059

Funding

National Eye Institute (EY025613)

  • Gina G Turrigiano

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animals were housed, cared for, surgerized, and sacrificed in accordance with Brandeis IBC and IACAUC protocols (#15005 and #18002). All surgery was performed under isoflurane anesthesia. All surgerized animals received two days of post-operative care including daily injection of Meloxicam and Penicillin to reduce discomfort/inflammation and risk of infection. Rats were always housed and recorded with at least one littermate.

Copyright

© 2021, Cary & Turrigiano

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,309
    views
  • 374
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Brian A Cary
  2. Gina G Turrigiano
(2021)
Stability of neocortical synapses across sleep and wake states during the critical period in rats
eLife 10:e66304.
https://doi.org/10.7554/eLife.66304

Share this article

https://doi.org/10.7554/eLife.66304

Further reading

    1. Neuroscience
    Victoria JH Ritvo, Alex Nguyen ... Kenneth A Norman
    Research Article

    What determines when neural representations of memories move together (integrate) or apart (differentiate)? Classic supervised learning models posit that, when two stimuli predict similar outcomes, their representations should integrate. However, these models have recently been challenged by studies showing that pairing two stimuli with a shared associate can sometimes cause differentiation, depending on the parameters of the study and the brain region being examined. Here, we provide a purely unsupervised neural network model that can explain these and other related findings. The model can exhibit integration or differentiation depending on the amount of activity allowed to spread to competitors — inactive memories are not modified, connections to moderately active competitors are weakened (leading to differentiation), and connections to highly active competitors are strengthened (leading to integration). The model also makes several novel predictions — most importantly, that when differentiation occurs as a result of this unsupervised learning mechanism, it will be rapid and asymmetric, and it will give rise to anticorrelated representations in the region of the brain that is the source of the differentiation. Overall, these modeling results provide a computational explanation for a diverse set of seemingly contradictory empirical findings in the memory literature, as well as new insights into the dynamics at play during learning.

    1. Neuroscience
    Marine Schimel, Ta-Chu Kao, Guillaume Hennequin
    Research Article

    During delayed ballistic reaches, motor areas consistently display movement-specific activity patterns prior to movement onset. It is unclear why these patterns arise: while they have been proposed to seed an initial neural state from which the movement unfolds, recent experiments have uncovered the presence and necessity of ongoing inputs during movement, which may lessen the need for careful initialization. Here, we modeled the motor cortex as an input-driven dynamical system, and we asked what the optimal way to control this system to perform fast delayed reaches is. We find that delay-period inputs consistently arise in an optimally controlled model of M1. By studying a variety of network architectures, we could dissect and predict the situations in which it is beneficial for a network to prepare. Finally, we show that optimal input-driven control of neural dynamics gives rise to multiple phases of preparation during reach sequences, providing a novel explanation for experimentally observed features of monkey M1 activity in double reaching.