Regulation of Nodal signaling propagation by receptor interactions and positive feedback

  1. Hannes Preiß
  2. Anna C Kögler  Is a corresponding author
  3. David Mörsdorf
  4. Daniel Čapek
  5. Gary H Soh
  6. Katherine W Rogers
  7. Hernán Morales-Navarrete
  8. María Almuedo-Castillo
  9. Patrick Müller  Is a corresponding author
  1. Friedrich Miescher Laboratory of the Max Planck Society, Germany
  2. University of Konstanz, Germany
  3. University of Vienna, Austria
  4. Eunice Kennedy Shriver National Institute of Child Health and Human Development, United States
  5. Centro Andaluz de Biología del Desarrollo, Spain

Abstract

During vertebrate embryogenesis, the germ layers are patterned by secreted Nodal signals. In the classical model, Nodals elicit signaling by binding to a complex comprising Type I/II Activin receptors (Acvr) and the co-receptor Tdgf1. However, it is currently unclear whether receptor binding can also affect the distribution of Nodals themselves through the embryo, and it is unknown which of the putative Acvr paralogs mediate Nodal signaling in zebrafish. Here, we characterize three Type I (Acvr1) and four Type II (Acvr2) homologs and show that - except for Acvr1c - all receptor-encoding transcripts are maternally deposited and present during zebrafish embryogenesis. We generated mutants and used them together with combinatorial morpholino knockdown and CRISPR F0 knockout (KO) approaches to assess compound loss-of-function phenotypes. We discovered that the Acvr2 homologs function partly redundantly and partially independently of Nodal to pattern the early zebrafish embryo, whereas the Type I receptors Acvr1b-a and Acvr1b-b redundantly act as major mediators of Nodal signaling. By combining quantitative analyses with expression manipulations, we found that feedback-regulated Type I receptors and co-receptors can directly influence the diffusion and distribution of Nodals, providing a mechanism for the spatial restriction of Nodal signaling during germ layer patterning.

Data availability

Figure 1 - Source Data, Figure 2 - Source Data, Figure 2 - Figure Supplement 1 - Source Data, Figure 2 - Figure Supplement 2 - Source Data, Figure 2 - Figure Supplement 3 - Source Data, Figure 3 - Source Data, Figure 3 - Figure Supplement 1 - Source Data, Figure 3 - Figure Supplement 2 - Source Data, Figure 3 - Figure Supplement 3 - Source Data, Figure 4 - Source Data, Figure 4 - Figure Supplement 1 - Source Data, Figure 5 - Source Data, Figure 6 - Source Data, Figure 6 - Figure Supplement 1 - Source Data and Figure 6 - Figure Supplement 2 - Source Data contain the numerical data used to generate the figures.

The following previously published data sets were used

Article and author information

Author details

  1. Hannes Preiß

    Systems Biology of Development, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6873-9440
  2. Anna C Kögler

    University of Konstanz, Konstanz, Germany
    For correspondence
    anna.koegler@uni-konstanz.de
    Competing interests
    The authors declare that no competing interests exist.
  3. David Mörsdorf

    Department of Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8982-2155
  4. Daniel Čapek

    University of Konstanz, Konstanz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Gary H Soh

    Systems Biology of Development, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Katherine W Rogers

    Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5700-2662
  7. Hernán Morales-Navarrete

    University of Konstanz, Konstanz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. María Almuedo-Castillo

    Centro Andaluz de Biología del Desarrollo, Seville, Spain
    Competing interests
    The authors declare that no competing interests exist.
  9. Patrick Müller

    University of Konstanz, Konstanz, Germany
    For correspondence
    p.mueller@uni.kn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0702-6209

Funding

International Max Planck Research School From Molecules to Organisms"" (Graduate Student Fellowship)

  • Hannes Preiß
  • David Mörsdorf
  • Patrick Müller

Max Planck Society (Max Planck Research Group)

  • Patrick Müller

European Research Council (Grant agreement No 637840 (QUANTPATTERN))

  • Patrick Müller

European Research Council (Grant agreement No 863952 (ACE-OF-SPACE))

  • Patrick Müller

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Lilianna Solnica-Krezel, Washington University School of Medicine, United States

Ethics

Animal experimentation: All procedures were executed in accordance with the guidelines of the State of Baden-Württemberg and approved by the Regierungspräsidium Tübingen and the Regierungspräsidium Freiburg.

Version history

  1. Received: January 9, 2021
  2. Accepted: September 19, 2022
  3. Accepted Manuscript published: September 23, 2022 (version 1)
  4. Accepted Manuscript updated: October 5, 2022 (version 2)
  5. Version of Record published: October 27, 2022 (version 3)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,603
    views
  • 336
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hannes Preiß
  2. Anna C Kögler
  3. David Mörsdorf
  4. Daniel Čapek
  5. Gary H Soh
  6. Katherine W Rogers
  7. Hernán Morales-Navarrete
  8. María Almuedo-Castillo
  9. Patrick Müller
(2022)
Regulation of Nodal signaling propagation by receptor interactions and positive feedback
eLife 11:e66397.
https://doi.org/10.7554/eLife.66397

Share this article

https://doi.org/10.7554/eLife.66397

Further reading

    1. Cell Biology
    2. Developmental Biology
    Nicolas Loyer, Elizabeth KJ Hogg ... Jens Januschke
    Research Article

    The generation of distinct cell fates during development depends on asymmetric cell division of progenitor cells. In the central and peripheral nervous system of Drosophila, progenitor cells respectively called neuroblasts or sensory organ precursors use PAR polarity during mitosis to control cell fate determination in their daughter cells. How polarity and the cell cycle are coupled, and how the cell cycle machinery regulates PAR protein function and cell fate determination is poorly understood. Here, we generate an analog sensitive allele of CDK1 and reveal that its partial inhibition weakens but does not abolish apical polarity in embryonic and larval neuroblasts and leads to defects in polarisation of fate determinants. We describe a novel in vivo phosphorylation of Bazooka, the Drosophila homolog of PAR-3, on Serine180, a consensus CDK phosphorylation site. In some tissular contexts, phosphorylation of Serine180 occurs in asymmetrically dividing cells but not in their symmetrically dividing neighbours. In neuroblasts, Serine180 phosphomutants disrupt the timing of basal polarisation. Serine180 phosphomutants also affect the specification and binary cell fate determination of sensory organ precursors as well as Baz localisation during their asymmetric cell divisions. Finally, we show that CDK1 phosphorylates Serine-S180 and an equivalent Serine on human PAR-3 in vitro.

    1. Developmental Biology
    2. Neuroscience
    Jonathan AC Menzies, André Maia Chagas ... Claudio R Alonso
    Research Article

    Movement is a key feature of animal systems, yet its embryonic origins are not fully understood. Here, we investigate the genetic basis underlying the embryonic onset of movement in Drosophila focusing on the role played by small non-coding RNAs (microRNAs, miRNAs). To this end, we first develop a quantitative behavioural pipeline capable of tracking embryonic movement in large populations of fly embryos, and using this system, discover that the Drosophila miRNA miR-2b-1 plays a role in the emergence of movement. Through the combination of spectral analysis of embryonic motor patterns, cell sorting and RNA in situs, genetic reconstitution tests, and neural optical imaging we define that miR-2b-1 influences the emergence of embryonic movement by exerting actions in the developing nervous system. Furthermore, through the combination of bioinformatics coupled to genetic manipulation of miRNA expression and phenocopy tests we identify a previously uncharacterised (but evolutionarily conserved) chloride channel encoding gene – which we term Movement Modulator (Motor) – as a genetic target that mechanistically links miR-2b-1 to the onset of movement. Cell-specific genetic reconstitution of miR-2b-1 expression in a null miRNA mutant background, followed by behavioural assays and target gene analyses, suggest that miR-2b-1 affects the emergence of movement through effects in sensory elements of the embryonic circuitry, rather than in the motor domain. Our work thus reports the first miRNA system capable of regulating embryonic movement, suggesting that other miRNAs are likely to play a role in this key developmental process in Drosophila as well as in other species.