Regulation of Nodal signaling propagation by receptor interactions and positive feedback

  1. Hannes Preiß
  2. Anna C Kögler  Is a corresponding author
  3. David Mörsdorf
  4. Daniel Čapek
  5. Gary H Soh
  6. Katherine W Rogers
  7. Hernán Morales-Navarrete
  8. María Almuedo-Castillo
  9. Patrick Müller  Is a corresponding author
  1. Friedrich Miescher Laboratory of the Max Planck Society, Germany
  2. University of Konstanz, Germany
  3. University of Vienna, Austria
  4. Eunice Kennedy Shriver National Institute of Child Health and Human Development, United States
  5. Centro Andaluz de Biología del Desarrollo, Spain

Abstract

During vertebrate embryogenesis, the germ layers are patterned by secreted Nodal signals. In the classical model, Nodals elicit signaling by binding to a complex comprising Type I/II Activin receptors (Acvr) and the co-receptor Tdgf1. However, it is currently unclear whether receptor binding can also affect the distribution of Nodals themselves through the embryo, and it is unknown which of the putative Acvr paralogs mediate Nodal signaling in zebrafish. Here, we characterize three Type I (Acvr1) and four Type II (Acvr2) homologs and show that - except for Acvr1c - all receptor-encoding transcripts are maternally deposited and present during zebrafish embryogenesis. We generated mutants and used them together with combinatorial morpholino knockdown and CRISPR F0 knockout (KO) approaches to assess compound loss-of-function phenotypes. We discovered that the Acvr2 homologs function partly redundantly and partially independently of Nodal to pattern the early zebrafish embryo, whereas the Type I receptors Acvr1b-a and Acvr1b-b redundantly act as major mediators of Nodal signaling. By combining quantitative analyses with expression manipulations, we found that feedback-regulated Type I receptors and co-receptors can directly influence the diffusion and distribution of Nodals, providing a mechanism for the spatial restriction of Nodal signaling during germ layer patterning.

Data availability

Figure 1 - Source Data, Figure 2 - Source Data, Figure 2 - Figure Supplement 1 - Source Data, Figure 2 - Figure Supplement 2 - Source Data, Figure 2 - Figure Supplement 3 - Source Data, Figure 3 - Source Data, Figure 3 - Figure Supplement 1 - Source Data, Figure 3 - Figure Supplement 2 - Source Data, Figure 3 - Figure Supplement 3 - Source Data, Figure 4 - Source Data, Figure 4 - Figure Supplement 1 - Source Data, Figure 5 - Source Data, Figure 6 - Source Data, Figure 6 - Figure Supplement 1 - Source Data and Figure 6 - Figure Supplement 2 - Source Data contain the numerical data used to generate the figures.

The following previously published data sets were used

Article and author information

Author details

  1. Hannes Preiß

    Systems Biology of Development, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6873-9440
  2. Anna C Kögler

    University of Konstanz, Konstanz, Germany
    For correspondence
    anna.koegler@uni-konstanz.de
    Competing interests
    The authors declare that no competing interests exist.
  3. David Mörsdorf

    Department of Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8982-2155
  4. Daniel Čapek

    University of Konstanz, Konstanz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Gary H Soh

    Systems Biology of Development, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Katherine W Rogers

    Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5700-2662
  7. Hernán Morales-Navarrete

    University of Konstanz, Konstanz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. María Almuedo-Castillo

    Centro Andaluz de Biología del Desarrollo, Seville, Spain
    Competing interests
    The authors declare that no competing interests exist.
  9. Patrick Müller

    University of Konstanz, Konstanz, Germany
    For correspondence
    p.mueller@uni.kn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0702-6209

Funding

International Max Planck Research School From Molecules to Organisms"" (Graduate Student Fellowship)

  • Hannes Preiß
  • David Mörsdorf
  • Patrick Müller

Max Planck Society (Max Planck Research Group)

  • Patrick Müller

European Research Council (Grant agreement No 637840 (QUANTPATTERN))

  • Patrick Müller

European Research Council (Grant agreement No 863952 (ACE-OF-SPACE))

  • Patrick Müller

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were executed in accordance with the guidelines of the State of Baden-Württemberg and approved by the Regierungspräsidium Tübingen and the Regierungspräsidium Freiburg.

Reviewing Editor

  1. Lilianna Solnica-Krezel, Washington University School of Medicine, United States

Publication history

  1. Received: January 9, 2021
  2. Accepted: September 19, 2022
  3. Accepted Manuscript published: September 23, 2022 (version 1)
  4. Accepted Manuscript updated: October 5, 2022 (version 2)
  5. Version of Record published: October 27, 2022 (version 3)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 995
    Page views
  • 273
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hannes Preiß
  2. Anna C Kögler
  3. David Mörsdorf
  4. Daniel Čapek
  5. Gary H Soh
  6. Katherine W Rogers
  7. Hernán Morales-Navarrete
  8. María Almuedo-Castillo
  9. Patrick Müller
(2022)
Regulation of Nodal signaling propagation by receptor interactions and positive feedback
eLife 11:e66397.
https://doi.org/10.7554/eLife.66397

Further reading

    1. Developmental Biology
    Tsz Long Chu, Peikai Chen ... Kathryn Song Eng Cheah
    Research Article Updated

    Bone homeostasis is regulated by hormones such as parathyroid hormone (PTH). While PTH can stimulate osteo-progenitor expansion and bone synthesis, how the PTH-signaling intensity in progenitors is controlled is unclear. Endochondral bone osteoblasts arise from perichondrium-derived osteoprogenitors and hypertrophic chondrocytes (HC). We found, via single-cell transcriptomics, that HC-descendent cells activate membrane-type 1 metalloproteinase 14 (MMP14) and the PTH pathway as they transition to osteoblasts in neonatal and adult mice. Unlike Mmp14 global knockouts, postnatal day 10 (p10) HC lineage-specific Mmp14 null mutants (Mmp14ΔHC) produce more bone. Mechanistically, MMP14 cleaves the extracellular domain of PTH1R, dampening PTH signaling, and consistent with the implied regulatory role, in Mmp14ΔHC mutants, PTH signaling is enhanced. We found that HC-derived osteoblasts contribute ~50% of osteogenesis promoted by treatment with PTH 1–34, and this response was amplified in Mmp14ΔHC. MMP14 control of PTH signaling likely applies also to both HC- and non-HC-derived osteoblasts because their transcriptomes are highly similar. Our study identifies a novel paradigm of MMP14 activity-mediated modulation of PTH signaling in the osteoblast lineage, contributing new insights into bone metabolism with therapeutic significance for bone-wasting diseases.

    1. Biochemistry and Chemical Biology
    2. Developmental Biology
    Zengdi Zhang, Zan Huang ... Hai-Bin Ruan
    Research Article Updated

    In mammals, interactions between the bone marrow (BM) stroma and hematopoietic progenitors contribute to bone-BM homeostasis. Perinatal bone growth and ossification provide a microenvironment for the transition to definitive hematopoiesis; however, mechanisms and interactions orchestrating the development of skeletal and hematopoietic systems remain largely unknown. Here, we establish intracellular O-linked β-N-acetylglucosamine (O-GlcNAc) modification as a posttranslational switch that dictates the differentiation fate and niche function of early BM stromal cells (BMSCs). By modifying and activating RUNX2, O-GlcNAcylation promotes osteogenic differentiation of BMSCs and stromal IL-7 expression to support lymphopoiesis. In contrast, C/EBPβ-dependent marrow adipogenesis and expression of myelopoietic stem cell factor (SCF) is inhibited by O-GlcNAcylation. Ablating O-GlcNAc transferase (OGT) in BMSCs leads to impaired bone formation, increased marrow adiposity, as well as defective B-cell lymphopoiesis and myeloid overproduction in mice. Thus, the balance of osteogenic and adipogenic differentiation of BMSCs is determined by reciprocal O-GlcNAc regulation of transcription factors, which simultaneously shapes the hematopoietic niche.