An estimate of the deepest branches of the tree of life from ancient vertically-evolving genes

  1. Edmund RR Moody
  2. Tara A Mahendrarajah
  3. Nina Dombrowski
  4. James W Clark
  5. Celine Petitjean
  6. Pierre Offre
  7. Gergely J Szöllősi
  8. Anja Spang  Is a corresponding author
  9. Tom A Williams  Is a corresponding author
  1. University of Bristol, United Kingdom
  2. Royal Netherlands Institute for Sea Research, Netherlands
  3. Eötvös Loránd University, Hungary

Abstract

Core gene phylogenies provide a window into early evolution, but different gene sets and analytical methods have yielded substantially different views of the tree of life. Trees inferred from a small set of universal core genes have typically supported a long branch separating the archaeal and bacterial domains. By contrast, recent analyses of a broader set of non-ribosomal genes have suggested that Archaea may be less divergent from Bacteria, and that estimates of inter-domain distance are inflated due to accelerated evolution of ribosomal proteins along the inter-domain branch. Resolving this debate is key to determining the diversity of the archaeal and bacterial domains, the shape of the tree of life, and our understanding of the early course of cellular evolution. Here, we investigate the evolutionary history of the marker genes key to the debate. We show that estimates of a reduced Archaea-Bacteria (AB) branch length result from inter-domain gene transfers and hidden paralogy in the expanded marker gene set. By contrast, analysis of a broad range of manually curated marker gene datasets from an evenly sampled set of 700 Archaea and Bacteria reveal that current methods likely underestimate the AB branch length due to substitutional saturation and poor model fit; that the best-performing phylogenetic markers tend to support longer inter-domain branch lengths; and that the AB branch lengths of ribosomal and non-ribosomal marker genes are statistically indistinguishable. Furthermore, our phylogeny inferred from the 27 highest-ranked marker genes recovers a clade of DPANN at the base of the Archaea, and places CPR within Bacteria as the sister group to the Chloroflexota.

Data availability

All of the data, including sequence alignments, trees, annotation files, and scripts associated with this manuscript have been deposited in the FigShare repository at DOI: 10.6084/m9.figshare.13395470.

Article and author information

Author details

  1. Edmund RR Moody

    School of Biological Sciences, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8785-5006
  2. Tara A Mahendrarajah

    Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7032-6581
  3. Nina Dombrowski

    Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. James W Clark

    School of Biological Sciences, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Celine Petitjean

    School of Biological Sciences, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Pierre Offre

    Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Gergely J Szöllősi

    Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8556-845X
  8. Anja Spang

    Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
    For correspondence
    Anja.Spang@nioz.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6518-8556
  9. Tom A Williams

    School of Biological Sciences, University of Bristol, Bristol, United Kingdom
    For correspondence
    tom.a.williams@bristol.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1072-0223

Funding

Gordon and Betty Moore Foundation (GBMF9741)

  • Anja Spang
  • Tom A Williams

Royal Society (RGF\EA\180199)

  • Edmund RR Moody
  • Tom A Williams

Natural Environment Research Council (NE/P00251X/1)

  • Celine Petitjean
  • Tom A Williams

Royal Society (URF\R\201024)

  • Tom A Williams

H2020 European Research Council (714774)

  • Gergely J Szöllősi

H2020 European Research Council (GINOP-2.3.2.-15-2016-00057)

  • Gergely J Szöllősi

Swedish Research Council (2016-03559)

  • Anja Spang

Netherlands Organisation for Scientific Research (WISE Fellowship)

  • Anja Spang

H2020 European Research Council (947317)

  • Anja Spang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Moody et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,791
    views
  • 947
    downloads
  • 63
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Edmund RR Moody
  2. Tara A Mahendrarajah
  3. Nina Dombrowski
  4. James W Clark
  5. Celine Petitjean
  6. Pierre Offre
  7. Gergely J Szöllősi
  8. Anja Spang
  9. Tom A Williams
(2022)
An estimate of the deepest branches of the tree of life from ancient vertically-evolving genes
eLife 11:e66695.
https://doi.org/10.7554/eLife.66695

Share this article

https://doi.org/10.7554/eLife.66695

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Torsten Günther, Jacob Chisausky ... Cristina Valdiosera
    Research Article

    Cattle (Bos taurus) play an important role in the life of humans in the Iberian Peninsula not just as a food source but also in cultural events. When domestic cattle were first introduced to Iberia, wild aurochs (Bos primigenius) were still present, leaving ample opportunity for mating (whether intended by farmers or not). Using a temporal bioarchaeological dataset covering eight millennia, we trace gene flow between the two groups. Our results show frequent hybridisation during the Neolithic and Chalcolithic, likely reflecting a mix of hunting and herding or relatively unmanaged herds, with mostly male aurochs and female domestic cattle involved. This is supported by isotopic evidence consistent with ecological niche sharing, with only a few domestic cattle possibly being managed. The proportion of aurochs ancestry in domestic cattle remains relatively constant from about 4000 years ago, probably due to herd management and selection against first generation hybrids, coinciding with other cultural transitions. The constant level of wild ancestry (~20%) continues into modern Western European breeds including Iberian cattle selected for aggressiveness and fighting ability. This study illuminates the genomic impact of human actions and wild introgression in the establishment of cattle as one of the most important domestic species today.

    1. Evolutionary Biology
    2. Genetics and Genomics
    James Boocock, Noah Alexander ... Leonid Kruglyak
    Research Article

    Expression quantitative trait loci (eQTLs) provide a key bridge between noncoding DNA sequence variants and organismal traits. The effects of eQTLs can differ among tissues, cell types, and cellular states, but these differences are obscured by gene expression measurements in bulk populations. We developed a one-pot approach to map eQTLs in Saccharomyces cerevisiae by single-cell RNA sequencing (scRNA-seq) and applied it to over 100,000 single cells from three crosses. We used scRNA-seq data to genotype each cell, measure gene expression, and classify the cells by cell-cycle stage. We mapped thousands of local and distant eQTLs and identified interactions between eQTL effects and cell-cycle stages. We took advantage of single-cell expression information to identify hundreds of genes with allele-specific effects on expression noise. We used cell-cycle stage classification to map 20 loci that influence cell-cycle progression. One of these loci influenced the expression of genes involved in the mating response. We showed that the effects of this locus arise from a common variant (W82R) in the gene GPA1, which encodes a signaling protein that negatively regulates the mating pathway. The 82R allele increases mating efficiency at the cost of slower cell-cycle progression and is associated with a higher rate of outcrossing in nature. Our results provide a more granular picture of the effects of genetic variants on gene expression and downstream traits.