Murine muscle stem cell response to perturbations of the neuromuscular junction are attenuated with aging

  1. Jacqueline A Larouche
  2. Mahir Mohiuddin
  3. Jeongmoon J Choi
  4. Peter J Ulintz
  5. Paula Fraczek
  6. Kaitlyn Sabin
  7. Sethuramasundaram Pitchiaya
  8. Sarah J Kurpiers
  9. Jesus Castor-Macias
  10. Wenxuan Liu
  11. Robert Louis Hastings
  12. Lemuel A Brown
  13. James F Markworth
  14. Kanishka De Silva
  15. Benjamin Levi
  16. Sofia D Merajver
  17. Gregorio Valdez
  18. Joe V Chakkalakal
  19. Young C Jang  Is a corresponding author
  20. Susan V Brooks  Is a corresponding author
  21. Carlos A Aguilar  Is a corresponding author
  1. Department of Biomedical Engineering, University of Michigan, United States
  2. Biointerfaces Institute, University of Michigan, United States
  3. Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, United States
  4. School of Biological Sciences, Georgia Institute of Technology, United States
  5. Wallace Coulter Departmentof Biomedical Engineering, Georgia Institute of Technology, United States
  6. Internal Medicine-Hematology/Oncology, University of Michigan, United States
  7. Michigan Center for Translational Pathology, University of Michigan, United States
  8. Department of Pharmacology and Physiology, University of Rochester Medical Center, United States
  9. Department of Biomedical Engineering, University of Rochester Medical Center, United States
  10. Wilmot Cancer Institute, Stem Cell and Regenerative Medicine Institute, and The Rochester Aging Research Center, University of Rochester Medical Center, United States
  11. Departmentof Molecular Biology, Cell Biology and Biochemistry, Brown University, United States
  12. Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, United States
  13. Department of Molecular & Integrative Physiology, University of Michigan, United States
  14. Department of Surgery, University of Texas Southwestern, United States
  15. Childrens Research Institute and Center for Mineral Metabolism, United States
  16. Program in Cellular and Molecular Biology, University of Michigan, United States
9 figures, 1 table and 1 additional file

Figures

Denervation induces muscle stem cell (MuSC) actions proximal to the neuromuscular junction (NMJ).

(A) Schematic of NMJ from Pax7CreER/+-Rosa26nTnG mice, which display red fluorescent protein (RFP) in their nuclei and following administration of tamoxifen, Pax7+ MuSCs (labeled with green arrow) …

Figure 2 with 1 supplement
Aging attenuates muscle stem cell (MuSC) engraftment into synaptic myonuclei after nervous perturbation.

(A) Representative immunofluorescence image of MuSC in proximity to neuromuscular junction (NMJ) from tibialis anterior (TA) muscle of young (3 months) Pax7CreER/+-Rosa26TdTomato/+ mouse. Pax7-Pink, …

Figure 2—figure supplement 1
Muscle stem cell loss and changes in neuro-muscular junctions in aged muscle.

(A) Total number of muscle stem cells (MuSCs) along the entire length of myofibers isolated uninjured control and sciatic nerve transection (SNT) tibialis anterior (TA) muscles from young (2–3 …

Figure 3 with 2 supplements
Single cell analysis of skeletal muscle stem cells (MuSCs) in age shows a subset express transcripts associated with the neuromuscular junction.

(A) Experiment design schematic. MuSCs were fluorescent activated cell sorting (FACS) enriched from young and aged wild-type (WT) mice, then analyzed by IF, single cell mRNA sequencing (scRNA-Seq), …

Figure 3—figure supplement 1
Single-cell sequencing of sorted muscle stem cells in young and aged muscle.

(A) Representative fluorescent activated cell sorting (FACS) scatter plots showing gating of muscle stem cells (MuSCs) based on negative (Sca-1, Mac-1, CD31, CD45, Ter-119) and positive (CXCR4, …

Figure 3—figure supplement 2
Synaptic factors in aged muscle stem cells.

(A) Plots of myogenic regulatory factor and rapsyn expression in Pax7+S100b+ cells and Pax7+S100b- cells in cells enriched from young vs. aged animals. Cells were filtered into groups based on raw …

Figure 4 with 1 supplement
Muscle injury induces a continuum of muscle stem cell (MuSC) states distinct from the synaptic state induced by neurodegeneration.

(A) Schematic of experiment design, whereby tibialis anterior (TA) and extensor digitorum longus (EDL) muscles from aged (22–24 months) wild-type mice were injured via intramuscular injections of …

Figure 4—figure supplement 1
Single-cell RNA sequencing of aged muscle stem cells during muscle regeneration.

(A) Violin plot of the number of unique molecular identifiers (top) and number of genes (bottom) in each dataset. (B) Stacked bar graph showing Pax7- NMJ, Pax7+ NMJ, and muscle stem cells (MuSCs) as …

Figure 5 with 2 supplements
Neurodegeneration activates muscle stem cells (MuSCs) in a similar manner to aging and rescue of motor neurons partially reverses this activation state.

(A) Schematic of neuromuscular junction (NMJ) in young (top) and aged or Sod1-/- (bottom) muscle, whereby NMJ becomes fragmented or partially denervated. (B) Representative images of Sod-/- and …

Figure 5—figure supplement 1
Single-cell RNA sequencing of Sod1-/-, and SynTgSod1-/ muscle stem cells.

(A) Violin plots of the number of unique molecular identifiers (UMIs) (top) and number of genes (bottom) recovered in each dataset. (B) Uniform manifold approximation and projection (UMAP) overlay …

Figure 5—figure supplement 2
Validation of synaptic proteins in sorted muscle stem cells from Sod1-/- and SynTgSod1-/- muscles.

(A) Representative IF images of Pax7 and S100b expression in muscle stem cells (MuSCs) sorted from Sod1-/- and SynTgSod1-/- muscles. Scale bar indicates 100 μm for full size images and 50 μm for …

Figure 6 with 1 supplement
Mislocalization of S100β signaling from denervation promotes muscle stem cell maladaptation.

(A) Schematic of S100β-GFP mice administered sciatic nerve transection (SNT) on one limb and the other limb acts as a control (Ctrl). (B) Representative immunofluorescence z-stack images of isolated …

Figure 6—figure supplement 1
Overexpression of S100β induces muscle stem cell dysfunction as observed in aging.

(A) Representative immunofluorescence images of untransfected myoblasts (control), myoblasts transfected with an empty vector (blank sgRNA), and myoblasts transfected with an S100β sgRNA-containing …

Proposed model for relationship between muscle stem cells and the neuromuscular junction.
Author response image 1
Dendrogram of transcriptional similarity across models.

SOD1.KO: SOD1-/-, SOD1.Rescue: SynTgSod1-/-.

Author response image 2
(A) UMAP overlays of transcriptomes reported in Kimmel et al., Development 2020 (peach) and the datasets reported in this manuscript.

(B) Marker-gene overlays showing canonical myogenic regulatory factors as well as S100b showing S100b is confined to the UMAP cluster containing primarily cells reported in this manuscript. (C) …

Tables

Key resources table
Reagent type
(species) or resource
DesignationSource or referenceIdentifiersAdditional information
AntibodyAPC anti-mouse Ly-6A/E (Sca-1), clone: D7, isotype: Rat IgG2a, κBioLegendBioLegend 108112; RRID:AB_313349FACS (1:400)
AntibodyAPC anti-mouse CD45, clone: 30-F11, isotype: Rat IgG2b, κBioLegendBioLegend 103112; RRID:AB_312977FACS (1:400)
AntibodyAPC anti-mouse/human CD11b, clone: M1/70. Isotype: Rat IgG2b, κBioLegendBioLegend 101212; RRID:AB_312795FACS (1:400)
AntibodyAPC anti-mouse TER-119, clone: TER-119, isotype: Rat IgG2b, κBioLegendBioLegend 116212; RRID:AB_313713FACS (1:400)
AntibodyPE anti-mouse/rat CD29, clone: HMβ1–1, isotype:
Armenian Hamster IgG
BioLegendBioLegend 102208; RRID:AB_312885FACS (1:200)
AntibodyBiotin Rat Anti-Mouse CD184, clone: 2B11/CXCR4 (RUO), isotype: Rat IgG2b, κ, lot # 6336587BD BioscienceBD Bioscience 551968; RRID:AB_394307FACS (1:100)
AntibodyStreptavidin PE-Cyanine7, lot # 4290713eBioscienceeBioscience 25-4317-82; RRID:AB_10116480FACS (1:1000)
AntibodyRabbit anti-mouse laminin 1+2, Isotype: Polyclonal IgGAbcamAbcam ab7463; RRID:AB_305933IF (1:500)
AntibodyGoat anti-mouse IgG1, Alexa Fluor 488 conjugateThermo FisherThermo Fisher
A21121; RRID:AB_2535764
IF (1:500)
AntibodyGoat anti-rabbit H+L, Alexa Fluor 555 conjugateThermo FisherThermo Fisher A21428; RRID:AB_141784IF (1:500)
Other4’,6-Diamidino-2-Phenylindole, Dihydrochloride (DAPI), FluoroPure gradeThermo FisherThermo Fisher
D21490
IF (1:500)
Nuclear stain
AntibodyMouse anti-Pax7, Isotype MIgG1, kappa light chain, supernatantDevelopmental Studies Hybridoma BankDHSB Pax7-sIF (1:100)
AntibodyRabbit polyclonal anti-S100BThermo FisherThermo Fisher PA5-78161; RRID:AB_2736549IF (1:500)
AntibodyMouse monoclonal anti-MyoD (G-1)Santa Cruz BiotechnologySanta Cruz Biotechnology Sc-377460; RRID:AB_2813894IF (1:200)
AntibodyDonkey anti-rabbit IgG (H+L), Alexa Fluor 647Thermo FisherThermo Fisher
A31573; RRID:AB_2536183
IF (1:500)
AntibodyGoat anti-mouse H+L, Alexa Fluor 555 conjugateThermo FisherThermo Fisher
A28180; RRID:AB_2536164
IF (1:250)
AntibodyAlexa Fluor 488 goat anti-rabbit secondary antibodyThermo FisherThermo Fisher
A11034; RRID:AB_2576217
IF (1:500)
AntibodyAlexa Fluor 488 conjugated α-BungarotoxinThermo FisherThermo Fisher
B13422
IF (1:500)
AntibodyHoechst 33342Thermo FisherThermo Fisher
H3570
IF (1:500)
AntibodyGoat anti-rabbit IgG (H+L), Alexa Fluor 647Thermo FisherThermo Fisher
A21245; RRID:AB_2535813
IF (1:500)
AntibodyGoat anti-mouse IgG (H+L), Alexa Fluor 647Thermo FisherThermo Fisher
A21235; RRID:AB_2535804
IF (1:500)
OtherDispase II (activity ≥0.5 units/mg solid)Sigma AldrichSigma D4693-1GDigestion of tissue to extract MuSCs
OtherCollagenase Type IIThermo FisherThermo Fisher 17101015Digestion of tissue to extract MuSCs
Chemical compound, drugPropidium Iodide – 1.0 mg/mL solution in waterThermo FisherThermo Fisher P3566FACS (1:400)
Commercial assay or kitMouse on Mouse blocking reagentVector LaboratoriesVector Laboratories MKB-2213; RRID:AB_2336587
OtherCorning CellTakFisher ScientificFisher Scientific C35424022.4 µg/mL
Adhere MuSCs to tissue culture plastic
Peptide, recombinant proteinXbaINew England BiolabsNEB R0145S
Peptide, recombinant proteinSalINew England BiolabsNEB R3138S
Peptide, recombinant proteinMatrigel Basement Membrane Matrix, LDEV-freeCorningCorning 356234
Commercial assay or kitCellROX Deep Red ReagentThermo FisherThermo Fisher C10422
Commercial assay or kitStellaris RNA FISH Wash Buffer ALGC-BiosearchLGC-Biosearch SMF-WA1-60
Commercial assay or kitStellaris RNA FISH Wash Buffer BLGC-BiosearchLGC-Biosearch SMF-WB1-20
Commercial assay or kitStellaris RNA FISH Hybridization BufferLGC-BiosearchLGC-Biosearch SMF-HB1-10
Sequence-based reagentFos FISH probeLGC-BiosearchLGC-Biosearch VSMF-3011–5
Commercial assay or kitSingle cell 3’ Library and Gel Bead Kit v2 and v310× Genomics10× Genomics 120267
Commercial assay or kitQIAprep Spin Miniprep KitQiagenQiagen 27104
Commercial assay or kitSatellite Cell Isolation Kit, mouseMiltenyi BiotecMiltenyi Biotec 130104268
Commercial assay or kitIn Situ Cell Death Detection Kit, TMR redSigma AldrichSigma 12156792910
Biological sample (Mus musculus)C57BL/6 miceCharles River LabsC57BL/6NCrl
Strain 027
Female, 3–4 months
Biological sample (Mus musculus)C57BL/6 miceNIAC57BL/6JNia; RRID:IMSR_JAX:000664Female, 20–24 months
Biological sample (Mus musculus)SynTgSod1-/- miceOklahoma Medical Research FoundationPMID:24378874, 31470261Female, 10–12 months
Biological sample (Mus musculus)Sod1-/- miceOklahoma Medical Research FoundationPMID:9264557, 15531919Female, 10–12 months
Biological sample (Mus musculus)Pax7CreER+/+ miceJackson LabsRRID:IMSR_JAX:017763Male, 2–3 months
Biological sample (Mus musculus)Rosa26mTmG+/+ miceJackson LabsRRID:IMSR_JAX: 007676Female, 2–3 months
Biological sample (Mus musculus)Rosa26TdTomato+/+ miceJackson LabsRRID:IMSR_JAX: 007909Female, 2–3 months
Biological sample (Mus musculus)Rosa26nTnG+/+ miceJackson LabsRRID:IMSR_JAX: 023035Female, 2–3 months
Biological sample (Mus musculus)S100b-GFP miceJackson LabsRRID:IMSR_JAX: 005621Female
Biological sample (Mus musculus)Rosa26dCas9-SunTag/+ miceJackson LabsStock # 43926-JAXFemale
Software, algorithmCellRanger v2.0.0, v3.0.010× Genomicshttps://support.10xgenomics.com/single-cell-gene-expression/software/downloads
Software, algorithmR v.4.0.2The R Foundation for Statistical ComputingRRID:SCR_001905
Software, algorithmBioconductor v.3.11Huber et al., 2015Nature Methods 12:115–121, PMID:25633503
Software, algorithmDESeq2 v.1.28.1Love et al., 2014RRID:SCR_015687
Software, algorithmscVelo v.0.2.2Bergen et al., 2020RRID:SCR_018168
Software, algorithmggplot2 v.3.3.2Wickham, 2016RRID:SCR_014601
Software, algorithmEnhancedVolcano v.1.6.0Blighe et al., 2021RRID:SCR_018931
Software, algorithmPython v3.6.5Python Software FoundationRRID:SCR_008394
Software, algorithmSeurat v.3.2.2Stuart et al., 2019RRID:SCR_007322
Software, algorithmSeuratWrappers v0.3.0https://github.com/satijalab/seurat-wrappers
Software, algorithmscCATCHShao et al., 2020https://github.com/ZJUFanLab/scCATCH
Software, algorithmLIGER v0.5.0Welch et al., 2019RRID:SCR_018100
Software, algorithmAnnotationDbi v1.50.3Pagès et al., 2021
Software, algorithmGenomeInfoDb 1.24.2Arora and Morgan, 2021
Software, algorithmJupyter v.4.4.0, notebook v.5.7.8Project Jupyter 2019https://jupyter.org/
Software, algorithmdplyr v1.0.2Wickham, 2021RRID:SCR_016708
Software, algorithmtibble v3.4.0Müller and Wickham, 2021
Software, algorithmtximport v1.16.1Soneson et al., 2016RRID:SCR_016752
Software, algorithmVelocyto v0.17La Manno et al., 2018RRID:SCR_018167
Software, algorithmKallisto v0.44Bray et al., 2016RRID:SCR_016582

Additional files

Download links