Visualizing synaptic plasticity in vivo by large-scale imaging of endogenous AMPA receptors

Abstract

Elucidating how synaptic molecules such as AMPA receptors mediate neuronal communication and tracking their dynamic expression during behavior is crucial to understand cognition and disease, but current technological barriers preclude large-scale exploration of molecular dynamics in vivo. We have developed a suite of innovative methodologies that break through these barriers: a new knockin mouse line with fluorescently tagged endogenous AMPA receptors, two-photon imaging of hundreds of thousands of labeled synapses in behaving mice, and computer-vision-based automatic synapse detection. Using these tools, we can longitudinally track how the strength of populations of synapses changes during behavior. We used this approach to generate an unprecedentedly detailed spatiotemporal map of synapses undergoing changes in strength following sensory experience. More generally, these tools can be used as an optical probe capable of measuring functional synapse strength across entire brain areas during any behavioral paradigm, describing complex system-wide changes with molecular precision.

Data availability

We have provided Source data for our Figures and deposited the remaining data to Dryad with doi:10.5061/dryad.ttdz08m0b. All code used to analyze and process data is freely available on GitHub, with links specified in the manuscript.

The following data sets were generated
    1. Huganir RL
    2. Graves A
    (2021) Raw data for Graves et. al 2021 eLife
    Dryad Digital Repository, doi:10.5061/dryad.ttdz08m0b.

Article and author information

Author details

  1. Austin R Graves

    Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  2. Richard H Roth

    Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6855-999X
  3. Han L Tan

    Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5163-7720
  4. Qianwen Zhu

    Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  5. Alexei M Bygrave

    Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2291-923X
  6. Elena Lopez-Ortega

    Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  7. Ingie Hong

    Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7246-9233
  8. Alina C Spiegel

    Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  9. Richard C Johnson

    Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  10. Joshua T Vogelstein

    Biomedical Engineering, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2487-6237
  11. Daniel J Tward

    Center for Imaging Science, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  12. Michael I Miller

    Center for Imaging Science, Johns Hopkins University, Baltimore, United States
    Competing interests
    Michael I Miller, Dr. Miller is a joint owner of AnatomyWorks. Dr. Miller's relationship with Anatomy-Works is being handled under full disclosure by the Johns Hopkins University..
  13. Richard L Huganir

    Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    For correspondence
    rhuganir@jhmi.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9783-5183

Funding

National Institutes of Health (R21 AG063193)

  • Austin R Graves
  • Richard L Huganir

Kavli Foundation

  • Austin R Graves
  • Alina C Spiegel
  • Daniel J Tward

National Institutes of Health (R01 MH123212)

  • Austin R Graves
  • Alexei M Bygrave
  • Michael I Miller
  • Richard L Huganir

Schmidt Science Nascent Innovation Grant (1)

  • Austin R Graves
  • Joshua T Vogelstein
  • Richard L Huganir

National Institutes of Health (K99 MH124920)

  • Alexei M Bygrave

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Brice Bathellier, CNRS, France

Ethics

Animal experimentation: These studies were conducted in accordance with US Public Health Service on Human Care and Use of Laboratory Animals (PHS Policy) and all procedures involving animals were approved by the Johns Hopkins Animal Care and Use Committee (ACUC) protocols (MO19M274, MO20M372, MO20M92, MO20M336). All surgeries were performed under isoflourane anesthesia. Every effort was made to reduce or eliminate pain and suffering during all surgical procedures, in vivo imaging sessions, and behavioral experiments.

Version history

  1. Preprint posted: March 2, 2020 (view preprint)
  2. Received: January 22, 2021
  3. Accepted: October 16, 2021
  4. Accepted Manuscript published: October 18, 2021 (version 1)
  5. Version of Record published: November 25, 2021 (version 2)

Copyright

© 2021, Graves et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,760
    views
  • 1,014
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Austin R Graves
  2. Richard H Roth
  3. Han L Tan
  4. Qianwen Zhu
  5. Alexei M Bygrave
  6. Elena Lopez-Ortega
  7. Ingie Hong
  8. Alina C Spiegel
  9. Richard C Johnson
  10. Joshua T Vogelstein
  11. Daniel J Tward
  12. Michael I Miller
  13. Richard L Huganir
(2021)
Visualizing synaptic plasticity in vivo by large-scale imaging of endogenous AMPA receptors
eLife 10:e66809.
https://doi.org/10.7554/eLife.66809

Share this article

https://doi.org/10.7554/eLife.66809

Further reading

    1. Neuroscience
    Mohsen Sadeghi, Reza Sharif Razavian ... Dagmar Sternad
    Research Article

    Natural behaviors have redundancy, which implies that humans and animals can achieve their goals with different strategies. Given only observations of behavior, is it possible to infer the control objective that the subject is employing? This challenge is particularly acute in animal behavior because we cannot ask or instruct the subject to use a particular strategy. This study presents a three-pronged approach to infer an animal’s control objective from behavior. First, both humans and monkeys performed a virtual balancing task for which different control strategies could be utilized. Under matched experimental conditions, corresponding behaviors were observed in humans and monkeys. Second, a generative model was developed that represented two main control objectives to achieve the task goal. Model simulations were used to identify aspects of behavior that could distinguish which control objective was being used. Third, these behavioral signatures allowed us to infer the control objective used by human subjects who had been instructed to use one control objective or the other. Based on this validation, we could then infer objectives from animal subjects. Being able to positively identify a subject’s control objective from observed behavior can provide a powerful tool to neurophysiologists as they seek the neural mechanisms of sensorimotor coordination.

    1. Neuroscience
    Yiyi Chen, Laimdota Zizmare ... Christoph Trautwein
    Research Article

    The retina consumes massive amounts of energy, yet its metabolism and substrate exploitation remain poorly understood. Here, we used a murine explant model to manipulate retinal energy metabolism under entirely controlled conditions and utilised 1H-NMR spectroscopy-based metabolomics, in situ enzyme detection, and cell viability readouts to uncover the pathways of retinal energy production. Our experimental manipulations resulted in varying degrees of photoreceptor degeneration, while the inner retina and retinal pigment epithelium were essentially unaffected. This selective vulnerability of photoreceptors suggested very specific adaptations in their energy metabolism. Rod photoreceptors were found to rely strongly on oxidative phosphorylation, but only mildly on glycolysis. Conversely, cone photoreceptors were dependent on glycolysis but insensitive to electron transport chain decoupling. Importantly, photoreceptors appeared to uncouple glycolytic and Krebs-cycle metabolism via three different pathways: (1) the mini-Krebs-cycle, fuelled by glutamine and branched chain amino acids, generating N-acetylaspartate; (2) the alanine-generating Cahill-cycle; (3) the lactate-releasing Cori-cycle. Moreover, the metabolomics data indicated a shuttling of taurine and hypotaurine between the retinal pigment epithelium and photoreceptors, likely resulting in an additional net transfer of reducing power to photoreceptors. These findings expand our understanding of retinal physiology and pathology and shed new light on neuronal energy homeostasis and the pathogenesis of neurodegenerative diseases.