Mechanism for differential recruitment of orbitostriatal transmission during actions and outcomes following chronic alcohol exposure

Abstract

Psychiatric disease often produces symptoms that have divergent effects on neural activity. For example, in drug dependence, dysfunctional value-based decision-making and compulsive-like actions have been linked to hypo- and hyper-activity of orbital frontal cortex (OFC)-basal ganglia circuits, respectively, however, the underlying mechanisms are unknown. Here we show that alcohol exposed mice have enhanced activity in OFC terminals in dorsal striatum (OFC-DS) associated with actions, but reduced activity of the same terminals during periods of outcome retrieval, corresponding with a loss of outcome control over decision-making. Disrupted OFC-DS terminal activity was due to a dysfunction of dopamine-type 1 receptors on spiny projection neurons (D1R SPNs) that resulted in increased retrograde endocannabinoid (eCB) signaling at OFC-D1R SPN synapses reducing OFC-DS transmission. Blocking CB1 receptors restored OFC-DS activity in vivo and rescued outcome-based control over decision-making. These findings demonstrate a circuit-, synapse-, and computation specific mechanism gating OFC activity in alcohol exposed mice.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data for all figures has been provided.

Article and author information

Author details

  1. Rafael Renteria

    Department of Psychology, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6199-0293
  2. Christian Cazares

    The Neurosciences Graduate Program, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8899-2109
  3. Emily T Baltz

    The Neurosciences Graduate Program, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9770-3666
  4. Drew C Schreiner

    Department of Psychology, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ege A Yalcinbas

    The Neurosciences Graduate Program, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9480-7192
  6. Thomas Steinkellner

    Department of Neurosciences, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Thomas S Hnasko

    Department of Neurosciences, The Neurosciences Graduate Program, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6176-8513
  8. Christina M Gremel

    Department of Psychology, The Neurosciences Graduate Program, University of California, San Diego, La Jolla, United States
    For correspondence
    cgremel@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8710-0543

Funding

National Institutes of Health (AA026077-01A1)

  • Christina M Gremel

National Institutes of Health (F32 AA026776)

  • Rafael Renteria

National Science Foundation (NSF-GRFP DGE-2038238)

  • Emily T Baltz

National Science Foundation (NSF-GRFP DGE-1650112)

  • Christian Cazares

National Institutes of Health (F31 AA027439)

  • Drew C Schreiner

National Institutes of Health (R01DA036612)

  • Thomas S Hnasko

National Institutes of Health (R01NS106822)

  • Thomas S Hnasko

National Institutes of Health (T01BX003759)

  • Thomas S Hnasko

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All experiments were approved by the Institutional Animal Care and Use Committees of the University of California San Diego and experiments were conducted according to NIH guidelines.

Reviewing Editor

  1. Laura A Bradfield, University of Technology Sydney, Australia

Version history

  1. Received: January 29, 2021
  2. Accepted: March 16, 2021
  3. Accepted Manuscript published: March 17, 2021 (version 1)
  4. Version of Record published: April 1, 2021 (version 2)

Copyright

© 2021, Renteria et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,199
    Page views
  • 143
    Downloads
  • 8
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rafael Renteria
  2. Christian Cazares
  3. Emily T Baltz
  4. Drew C Schreiner
  5. Ege A Yalcinbas
  6. Thomas Steinkellner
  7. Thomas S Hnasko
  8. Christina M Gremel
(2021)
Mechanism for differential recruitment of orbitostriatal transmission during actions and outcomes following chronic alcohol exposure
eLife 10:e67065.
https://doi.org/10.7554/eLife.67065

Further reading

    1. Neuroscience
    Amanda J González Segarra, Gina Pontes ... Kristin Scott
    Research Article

    Consumption of food and water is tightly regulated by the nervous system to maintain internal nutrient homeostasis. Although generally considered independently, interactions between hunger and thirst drives are important to coordinate competing needs. In Drosophila, four neurons called the interoceptive subesophageal zone neurons (ISNs) respond to intrinsic hunger and thirst signals to oppositely regulate sucrose and water ingestion. Here, we investigate the neural circuit downstream of the ISNs to examine how ingestion is regulated based on internal needs. Utilizing the recently available fly brain connectome, we find that the ISNs synapse with a novel cell-type bilateral T-shaped neuron (BiT) that projects to neuroendocrine centers. In vivo neural manipulations revealed that BiT oppositely regulates sugar and water ingestion. Neuroendocrine cells downstream of ISNs include several peptide-releasing and peptide-sensing neurons, including insulin producing cells (IPCs), crustacean cardioactive peptide (CCAP) neurons, and CCHamide-2 receptor isoform RA (CCHa2R-RA) neurons. These neurons contribute differentially to ingestion of sugar and water, with IPCs and CCAP neurons oppositely regulating sugar and water ingestion, and CCHa2R-RA neurons modulating only water ingestion. Thus, the decision to consume sugar or water occurs via regulation of a broad peptidergic network that integrates internal signals of nutritional state to generate nutrient-specific ingestion.

    1. Neuroscience
    Lucas Y Tian, Timothy L Warren ... Michael S Brainard
    Research Article

    Complex behaviors depend on the coordinated activity of neural ensembles in interconnected brain areas. The behavioral function of such coordination, often measured as co-fluctuations in neural activity across areas, is poorly understood. One hypothesis is that rapidly varying co-fluctuations may be a signature of moment-by-moment task-relevant influences of one area on another. We tested this possibility for error-corrective adaptation of birdsong, a form of motor learning which has been hypothesized to depend on the top-down influence of a higher-order area, LMAN (lateral magnocellular nucleus of the anterior nidopallium), in shaping moment-by-moment output from a primary motor area, RA (robust nucleus of the arcopallium). In paired recordings of LMAN and RA in singing birds, we discovered a neural signature of a top-down influence of LMAN on RA, quantified as an LMAN-leading co-fluctuation in activity between these areas. During learning, this co-fluctuation strengthened in a premotor temporal window linked to the specific movement, sequential context, and acoustic modification associated with learning. Moreover, transient perturbation of LMAN activity specifically within this premotor window caused rapid occlusion of pitch modifications, consistent with LMAN conveying a temporally localized motor-biasing signal. Combined, our results reveal a dynamic top-down influence of LMAN on RA that varies on the rapid timescale of individual movements and is flexibly linked to contexts associated with learning. This finding indicates that inter-area co-fluctuations can be a signature of dynamic top-down influences that support complex behavior and its adaptation.