Associations of topic-specific peer review outcomes and institute and center award rates with funding disparities at the National Institutes of Health

  1. Michael S Lauer  Is a corresponding author
  2. Jamie Doyle
  3. Joy Wang
  4. Deepshikha Roychowdhury
  1. National Institutes of Health, United States
  2. National Center for Advancing Translational Sciences, United States

Abstract

A previous report found an association of topic choice with race-based funding disparities among R01 applications submitted to the National Institutes of Health ('NIH') between 2011-2015. Applications submitted by African American or Black ('AAB') Principal Investigators ('PIs') skewed toward a small number of topics that were less likely to be funded (or 'awarded'). It was suggested that lower award rates may be related to topic-related biases of peer reviewers. However, the report did not account for differential funding ecologies among NIH Institutes and Centers ('ICs'). In a re-analysis, we find that 10% of 148 topics account for 50% of applications submitted by AAB PIs. These applications on 'AAB Preferred' topics were funded at lower rates, but peer review outcomes were similar. The lower rate of funding for these topics was primarily due to their assignment to ICs with lower award rates, not to peer-reviewer preferences.

Data availability

The authors have provided the de-identified data frame (in .RData format) along with three R markdown files that will make it possible for interested readers to reproduce the main paper and the two appendices (including all tables, figures, and numbers in the text).

Article and author information

Author details

  1. Michael S Lauer

    Office of the Director, National Institutes of Health, Bethesda, United States
    For correspondence
    Michael.Lauer@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9217-8177
  2. Jamie Doyle

    Division of Clinical Innovation, National Center for Advancing Translational Sciences, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Joy Wang

    Office of Extramural Research, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Deepshikha Roychowdhury

    Office of Extramural Research, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

The authors conducted this work as part of their official US government duties.

Reviewing Editor

  1. Cliff J Rosen, Maine Medical Center Research Institute, United States

Version history

  1. Received: February 3, 2021
  2. Accepted: April 8, 2021
  3. Accepted Manuscript published: April 13, 2021 (version 1)
  4. Version of Record published: April 30, 2021 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,352
    views
  • 205
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael S Lauer
  2. Jamie Doyle
  3. Joy Wang
  4. Deepshikha Roychowdhury
(2021)
Associations of topic-specific peer review outcomes and institute and center award rates with funding disparities at the National Institutes of Health
eLife 10:e67173.
https://doi.org/10.7554/eLife.67173

Share this article

https://doi.org/10.7554/eLife.67173

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    Trine Line Hauge Okholm, Andreas Bjerregaard Kamstrup ... Christian Kroun Damgaard
    Research Article

    Circular RNAs represent a class of endogenous RNAs that regulate gene expression and influence cell biological decisions with implications for the pathogenesis of several diseases. Here, we disclose a novel gene-regulatory role of circHIPK3 by combining analyses of large genomics datasets and mechanistic cell biological follow-up experiments. Using time-course depletion of circHIPK3 and specific candidate RNA-binding proteins, we identify several perturbed genes by RNA sequencing analyses. Expression-coupled motif analyses identify an 11-mer motif within circHIPK3, which also becomes enriched in genes that are downregulated upon circHIPK3 depletion. By mining eCLIP datasets and combined with RNA immunoprecipitation assays, we demonstrate that the 11-mer motif constitutes a strong binding site for IGF2BP2 in bladder cancer cell lines. Our results suggest that circHIPK3 can sequester IGF2BP2 as a competing endogenous RNA (ceRNA), leading to target mRNA stabilization. As an example of a circHIPK3-regulated gene, we focus on the STAT3 mRNA as a specific substrate of IGF2BP2 and validate that manipulation of circHIPK3 regulates IGF2BP2-STAT3 mRNA binding and, thereby, STAT3 mRNA levels. Surprisingly, absolute copy number quantifications demonstrate that IGF2BP2 outnumbers circHIPK3 by orders of magnitude, which is inconsistent with a simple 1:1 ceRNA hypothesis. Instead, we show that circHIPK3 can nucleate multiple copies of IGF2BP2, potentially via phase separation, to produce IGF2BP2 condensates. Our results support a model where a few cellular circHIPK3 molecules can induce IGF2BP2 condensation, thereby regulating key factors for cell proliferation.

    1. Cell Biology
    2. Computational and Systems Biology
    N Suhas Jagannathan, Javier Yu Peng Koh ... Lisa Tucker-Kellogg
    Research Article

    Bats have unique characteristics compared to other mammals, including increased longevity and higher resistance to cancer and infectious disease. While previous studies have analyzed the metabolic requirements for flight, it is still unclear how bat metabolism supports these unique features, and no study has integrated metabolomics, transcriptomics, and proteomics to characterize bat metabolism. In this work, we performed a multi-omics data analysis using a computational model of metabolic fluxes to identify fundamental differences in central metabolism between primary lung fibroblast cell lines from the black flying fox fruit bat (Pteropus alecto) and human. Bat cells showed higher expression levels of Complex I components of electron transport chain (ETC), but, remarkably, a lower rate of oxygen consumption. Computational modeling interpreted these results as indicating that Complex II activity may be low or reversed, similar to an ischemic state. An ischemic-like state of bats was also supported by decreased levels of central metabolites and increased ratios of succinate to fumarate in bat cells. Ischemic states tend to produce reactive oxygen species (ROS), which would be incompatible with the longevity of bats. However, bat cells had higher antioxidant reservoirs (higher total glutathione and higher ratio of NADPH to NADP) despite higher mitochondrial ROS levels. In addition, bat cells were more resistant to glucose deprivation and had increased resistance to ferroptosis, one of the characteristics of which is oxidative stress. Thus, our studies revealed distinct differences in the ETC regulation and metabolic stress responses between human and bat cells.