Environmental fluctuations reshape an unexpected diversity-disturbance relationship in a microbial community

  1. Christopher P Mancuso
  2. Hyunseok Lee
  3. Clare I Abreu
  4. Jeff Gore
  5. Ahmad S Khalil  Is a corresponding author
  1. Boston University, United States
  2. Massachusetts Institute of Technology, United States

Abstract

Environmental disturbances have long been theorized to play a significant role in shaping the diversity and composition of ecosystems. However, an inability to specify the characteristics of a disturbance experimentally has produced an inconsistent picture of diversity-disturbance relationships (DDRs). Here, using a high-throughput programmable culture system, we subjected a soil-derived bacterial community to dilution disturbance profiles with different intensities (mean dilution rates), applied either constantly or with fluctuations of different frequencies. We observed an unexpected U-shaped relationship between community diversity and disturbance intensity in the absence of fluctuations. Adding fluctuations increased community diversity and erased the U-shape. All our results are well-captured by a Monod consumer resource model, which also explains how U-shaped DDRs emerge via a novel 'niche flip' mechanism. Broadly, our combined experimental and modeling framework demonstrates how distinct features of an environmental disturbance can interact in complex ways to govern ecosystem assembly and offers strategies for reshaping the composition of microbiomes.

Data availability

All sequencing data is deposited in the Sequence Read Archive (SRA) accessible with a BioProject accession code PRJNA719465. Agar plate images are deposited on Figshare accessible at doi.org/10.6084/m9.figshare.15117558. Computer code used to run eVOLVER experiments and for theoretical modeling is available at github.com/khalillab. All other datasets required to produce the results in the current study are included as supplemental data. Source data files have been provided.

The following data sets were generated

Article and author information

Author details

  1. Christopher P Mancuso

    Biomedical Engineering, Boston University, Boston, United States
    Competing interests
    No competing interests declared.
  2. Hyunseok Lee

    Physics, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1554-6228
  3. Clare I Abreu

    Physics, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  4. Jeff Gore

    Physics of Living Systems, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4583-8555
  5. Ahmad S Khalil

    Department of Biomedical Engineering, Boston University, Boston, United States
    For correspondence
    khalil@bu.edu
    Competing interests
    Ahmad S Khalil, A.S.K. is co-founder of Fynch Biosciences, a manufacturer of eVOLVER hardware..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8214-0546

Funding

Defense Advanced Research Projects Agency (HR001115C0091)

  • Ahmad S Khalil

Defense Advanced Research Projects Agency (HR001117S0029)

  • Ahmad S Khalil

Simons Foundation (542385)

  • Jeff Gore

National Institute of General Medical Sciences (R01GM102311)

  • Jeff Gore

National Institute of Biomedical Imaging and Bioengineering (R01EB027793)

  • Ahmad S Khalil

National Institutes of Health (DP2AI131083)

  • Ahmad S Khalil

National Science Foundation (MCB-1350949)

  • Ahmad S Khalil

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Mancuso et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,818
    views
  • 318
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christopher P Mancuso
  2. Hyunseok Lee
  3. Clare I Abreu
  4. Jeff Gore
  5. Ahmad S Khalil
(2021)
Environmental fluctuations reshape an unexpected diversity-disturbance relationship in a microbial community
eLife 10:e67175.
https://doi.org/10.7554/eLife.67175

Share this article

https://doi.org/10.7554/eLife.67175

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Cesare V Parise, Marc O Ernst
    Research Article

    Audiovisual information reaches the brain via both sustained and transient input channels, representing signals’ intensity over time or changes thereof, respectively. To date, it is unclear to what extent transient and sustained input channels contribute to the combined percept obtained through multisensory integration. Based on the results of two novel psychophysical experiments, here we demonstrate the importance of the transient (instead of the sustained) channel for the integration of audiovisual signals. To account for the present results, we developed a biologically inspired, general-purpose model for multisensory integration, the multisensory correlation detectors, which combines correlated input from unimodal transient channels. Besides accounting for the results of our psychophysical experiments, this model could quantitatively replicate several recent findings in multisensory research, as tested against a large collection of published datasets. In particular, the model could simultaneously account for the perceived timing of audiovisual events, multisensory facilitation in detection tasks, causality judgments, and optimal integration. This study demonstrates that several phenomena in multisensory research that were previously considered unrelated, all stem from the integration of correlated input from unimodal transient channels.

    1. Computational and Systems Biology
    Franck Simon, Maria Colomba Comes ... Herve Isambert
    Tools and Resources

    Live-cell microscopy routinely provides massive amounts of time-lapse images of complex cellular systems under various physiological or therapeutic conditions. However, this wealth of data remains difficult to interpret in terms of causal effects. Here, we describe CausalXtract, a flexible computational pipeline that discovers causal and possibly time-lagged effects from morphodynamic features and cell–cell interactions in live-cell imaging data. CausalXtract methodology combines network-based and information-based frameworks, which is shown to discover causal effects overlooked by classical Granger and Schreiber causality approaches. We showcase the use of CausalXtract to uncover novel causal effects in a tumor-on-chip cellular ecosystem under therapeutically relevant conditions. In particular, we find that cancer-associated fibroblasts directly inhibit cancer cell apoptosis, independently from anticancer treatment. CausalXtract uncovers also multiple antagonistic effects at different time delays. Hence, CausalXtract provides a unique computational tool to interpret live-cell imaging data for a range of fundamental and translational research applications.