IGF-1 facilitates extinction of conditioned fear

  1. Laura E Maglio  Is a corresponding author
  2. José A Noriega-Prieto
  3. Irene B Maroto
  4. Jesús Martin-Cortecero
  5. Antonio Muñoz-Callejas
  6. Marta Callejo-Móstoles
  7. David Fernández de Sevilla  Is a corresponding author
  1. Universidad de La Laguna, Spain
  2. University of Minnesota, United States
  3. Universidad Complutense de Madrid, Spain
  4. Heidelberg University, Germany
  5. Universidad Autonoma de Madrid, Spain

Abstract

Insulin-like growth factor-1 (IGF-1) plays a key role in synaptic plasticity, spatial learning and anxiety-like behavioral processes. While IGF-1 regulates neuronal firing and synaptic transmission in many areas of the central nervous system, its signaling and consequences on excitability, synaptic plasticity, and animal behavior dependent on the prefrontal cortex remain unexplored. Here, we show that IGF-1 induces a long-lasting depression of the medium and slow post-spike afterhyperpolarization (mAHP and sAHP), increasing the excitability of layer 5 pyramidal neurons of the rat infralimbic cortex. Besides, IGF-1 mediates a presynaptic long-term depression of both inhibitory and excitatory synaptic transmission in these neurons. The net effect of this IGF-1 mediated synaptic plasticity is a long-term potentiation of the postsynaptic potentials. Moreover, we demonstrate that IGF-1 favors the fear extinction memory. These results show novel functional consequences of IGF-1 signaling, revealing IGF-1 as a key element in the control of the fear extinction memory.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Laura E Maglio

    Departamento de Ciencias Médicas Básicas (Fisiología) and Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Tenerife, Spain
    For correspondence
    lamaglio@ull.edu.es
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4760-5624
  2. José A Noriega-Prieto

    Department of Neuroscience, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Irene B Maroto

    Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Jesús Martin-Cortecero

    Institute of Physiology and Pathophys, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9350-6267
  5. Antonio Muñoz-Callejas

    Anatomia Histologia y Neurociencia, Universidad Autonoma de Madrid, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  6. Marta Callejo-Móstoles

    Anatomia Histologia y Neurociencia, Universidad Autonoma de Madrid, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. David Fernández de Sevilla

    Anatomia Histologia y Neurociencia, Universidad Autonoma de Madrid, Madrid, Spain
    For correspondence
    david.fernandezdesevilla@uam.es
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6344-0773

Funding

Ministerio de Economía, Industria y Competitividad, Gobierno de España (BFU2013-43668-P)

  • David Fernández de Sevilla

Ministerio de Economía, Industria y Competitividad, Gobierno de España (BFU2016-0802-P AEI/FEDER,UE)

  • David Fernández de Sevilla

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were approved by the Universidad Autónoma of Madrid Ethical Committee on Animal Welfare and conform to Spanish and European guidelines for the protection of experimental animals (Directive 2010/63/EU). An effort was made to minimize animal suffering and number.

Copyright

© 2021, Maglio et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,562
    views
  • 264
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Laura E Maglio
  2. José A Noriega-Prieto
  3. Irene B Maroto
  4. Jesús Martin-Cortecero
  5. Antonio Muñoz-Callejas
  6. Marta Callejo-Móstoles
  7. David Fernández de Sevilla
(2021)
IGF-1 facilitates extinction of conditioned fear
eLife 10:e67267.
https://doi.org/10.7554/eLife.67267

Share this article

https://doi.org/10.7554/eLife.67267

Further reading

    1. Neuroscience
    William T Redman, Santiago Acosta-Mendoza ... Michael J Goard
    Research Article

    Although grid cells are one of the most well-studied functional classes of neurons in the mammalian brain, whether there is a single orientation and spacing value per grid module has not been carefully tested. We analyze a recent large-scale recording of medial entorhinal cortex to characterize the presence and degree of heterogeneity of grid properties within individual modules. We find evidence for small, but robust, variability and hypothesize that this property of the grid code could enhance the encoding of local spatial information. Performing analysis on synthetic populations of grid cells, where we have complete control over the amount heterogeneity in grid properties, we demonstrate that grid property variability of a similar magnitude to the analyzed data leads to significantly decreased decoding error. This holds even when restricted to activity from a single module. Our results highlight how the heterogeneity of the neural response properties may benefit coding and opens new directions for theoretical and experimental analysis of grid cells.

    1. Genetics and Genomics
    2. Neuroscience
    Monique Marylin Alves de Almeida, Yves De Repentigny ... Rashmi Kothary
    Research Article

    Spinal muscular atrophy (SMA) is caused by mutations in the Survival Motor Neuron 1 (SMN1) gene. While traditionally viewed as a motor neuron disorder, there is involvement of various peripheral organs in SMA. Notably, fatty liver has been observed in SMA mouse models and SMA patients. Nevertheless, it remains unclear whether intrinsic depletion of SMN protein in the liver contributes to pathology in the peripheral or central nervous systems. To address this, we developed a mouse model with a liver-specific depletion of SMN by utilizing an Alb-Cre transgene together with one Smn2B allele and one Smn1 exon 7 allele flanked by loxP sites. Initially, we evaluated phenotypic changes in these mice at postnatal day 19 (P19), when the severe model of SMA, the Smn2B/- mice, exhibit many symptoms of the disease. The liver-specific SMN depletion does not induce motor neuron death, neuromuscular pathology or muscle atrophy, characteristics typically observed in the Smn2B/- mouse at P19. However, mild liver steatosis was observed, although no changes in liver function were detected. Notably, pancreatic alterations resembled that of Smn2B/-mice, with a decrease in insulin-producing β-cells and an increase in glucagon-producingα-cells, accompanied by a reduction in blood glucose and an increase in plasma glucagon and glucagon-like peptide (GLP-1). These changes were transient, as mice at P60 exhibited recovery of liver and pancreatic function. While the mosaic pattern of the Cre-mediated excision precludes definitive conclusions regarding the contribution of liver-specific SMN depletion to overall tissue pathology, our findings highlight an intricate connection between liver function and pancreatic abnormalities in SMA.