1. Immunology and Inflammation
Download icon

Role of the transcriptional regulator SP140 in resistance to bacterial infections via repression of type I interferons

  1. Daisy X Ji
  2. Kristen C Witt
  3. Dmitri I Kotov
  4. Shally R Margolis
  5. Alexander Louie
  6. Victoria Chevée
  7. Katherine J Chen
  8. Moritz Gaidt
  9. Harmandeep S Dhaliwal
  10. Angus Y Lee
  11. Stephen L Nishimura
  12. Dario S Zamboni
  13. Igor Kramnik
  14. Daniel A. Portnoy
  15. K Heran Darwin
  16. Russell E Vance  Is a corresponding author
  1. UC Berkeley, United States
  2. University of California, Berkeley, United States
  3. University of California at San Francisco, United States
  4. University of São Paulo, Brazil
  5. Boston University, Boston University School of Medicine, United States
  6. New York University Robert Grossman School of Medicine, United States
Research Article
  • Cited 1
  • Views 818
  • Annotations
Cite this article as: eLife 2021;10:e67290 doi: 10.7554/eLife.67290

Abstract

Type I interferons (IFNs) are essential for anti-viral immunity, but often impair protective immune responses during bacterial infections. An important question is how type I IFNs are strongly induced during viral infections, and yet are appropriately restrained during bacterial infections. The Super susceptibility to tuberculosis 1 (Sst1) locus in mice confers resistance to diverse bacterial infections. Here we provide evidence that Sp140 is a gene encoded within the Sst1 locus that represses type I IFN transcription during bacterial infections. We generated Sp140-/- mice and find they are susceptible to infection by Legionella pneumophila and Mycobacterium tuberculosis. Susceptibility of Sp140-/- mice to bacterial infection was rescued by crosses to mice lacking the type I IFN receptor (Ifnar-/-). Our results implicate Sp140 as an important negative regulator of type I IFNs that is essential for resistance to bacterial infections.

Data availability

RNA-seq data is available at GEO, accession number GSE166114. Amplicon sequencing data is available at the SRA, BioProject accession number PRJNA698382

The following data sets were generated

Article and author information

Author details

  1. Daisy X Ji

    Molecular and Cell Biology, UC Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  2. Kristen C Witt

    Molecular and Cell Biology, UC Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8744-9457
  3. Dmitri I Kotov

    Molecular and Cell Biology, UC Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7843-1503
  4. Shally R Margolis

    Molecular and Cell Biology, UC Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  5. Alexander Louie

    Molecular and Cell Biology, UC Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  6. Victoria Chevée

    Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  7. Katherine J Chen

    Molecular and Cell Biology, UC Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  8. Moritz Gaidt

    Molecular and Cell Biology, UC Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  9. Harmandeep S Dhaliwal

    Cancer Research Laboratory, UC Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  10. Angus Y Lee

    Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  11. Stephen L Nishimura

    Pathology, University of California at San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  12. Dario S Zamboni

    Cell Biology, University of São Paulo, Ribeirão Preto, Brazil
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7856-7512
  13. Igor Kramnik

    The National Emerging Infectious Diseases Laboratories, Department of Medicine, Boston University, Boston University School of Medicine, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6511-9246
  14. Daniel A. Portnoy

    Cancer Research Laboratory, UC Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  15. K Heran Darwin

    Department of Microbiology, New York University Robert Grossman School of Medicine, New York, United States
    Competing interests
    No competing interests declared.
  16. Russell E Vance

    Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    rvance@berkeley.edu
    Competing interests
    Russell E Vance, consults for Ventus Therapeutics.Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6686-3912

Funding

National Institutes of Health (R37AI075039)

  • Russell E Vance

National Institutes of Health (R01AI155634)

  • Russell E Vance

Howard Hughes Medical Institute (Investigator Award)

  • Russell E Vance

National Institutes of Health (P01AI066302)

  • Russell E Vance

National Institutes of Health (P01AI066302)

  • Daniel A. Portnoy

National Institutes of Health (R01HL134183)

  • Stephen L Nishimura

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Animal studies were approved by the UC Berkeley Animal Care and Use Committee (current protocol number: AUP-2014-09-6665-2).

Reviewing Editor

  1. Christina L Stallings, Washington University School of Medicine, United States

Publication history

  1. Received: February 6, 2021
  2. Accepted: June 20, 2021
  3. Accepted Manuscript published: June 21, 2021 (version 1)
  4. Version of Record published: July 1, 2021 (version 2)

Copyright

© 2021, Ji et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 818
    Page views
  • 118
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Evolutionary Biology
    2. Immunology and Inflammation
    Srijan Seal et al.
    Review Article

    Researchers worldwide are repeatedly warning us against future zoonotic diseases resulting from humankind’s insurgence into natural ecosystems. The same zoonotic pathogens that cause severe infections in a human host frequently fail to produce any disease outcome in their natural hosts. What precise features of the immune system enable natural reservoirs to carry these pathogens so efficiently? To understand these effects, we highlight the importance of tracing the evolutionary basis of pathogen tolerance in reservoir hosts, while drawing implications from their diverse physiological and life-history traits, and ecological contexts of host-pathogen interactions. Long-term co-evolution might allow reservoir hosts to modulate immunity and evolve tolerance to zoonotic pathogens, increasing their circulation and infectious period. Such processes can also create a genetically diverse pathogen pool by allowing more mutations and genetic exchanges between circulating strains, thereby harboring rare alive-on-arrival variants with extended infectivity to new hosts (i.e., spillover). Finally, we end by underscoring the indispensability of a large multidisciplinary empirical framework to explore the proposed link between evolved tolerance, pathogen prevalence, and spillover in the wild.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Hao Gu et al.
    Research Article

    Vaccination strategies for rapid protection against multidrug-resistant bacterial infection are very important, especially for hospitalized patients who have high risk of exposure to these bacteria. However, few such vaccination strategies exist due to a shortage of knowledge supporting their rapid effect. Here, we demonstrated that a single intranasal immunization of inactivated whole cell of Acinetobacter baumannii elicits rapid protection against broad A. baumannii-infected pneumonia via training of innate immune response in Rag1-/- mice. Immunization-trained alveolar macrophages (AMs) showed enhanced TNF-α production upon restimulation. Adoptive transfer of immunization-trained AMs into naive mice mediated rapid protection against infection. Elevated TLR4 expression on vaccination-trained AMs contributed to rapid protection. Moreover, immunization-induced rapid protection was also seen in Pseudomonas aeruginosa and Klebsiella pneumoniae pneumonia models, but not in Staphylococcus aureus and Streptococcus pneumoniae model. Our data reveal that a single intranasal immunization induces rapid and efficient protection against certain Gram-negative bacterial pneumonia via training AMs response, which highlights the importance and the possibility of harnessing trained immunity of AMs to design rapid-effecting vaccine.