Role of the transcriptional regulator SP140 in resistance to bacterial infections via repression of type I interferons

  1. Daisy X Ji
  2. Kristen C Witt
  3. Dmitri I Kotov
  4. Shally R Margolis
  5. Alexander Louie
  6. Victoria Chevée
  7. Katherine J Chen
  8. Moritz Gaidt
  9. Harmandeep S Dhaliwal
  10. Angus Y Lee
  11. Stephen L Nishimura
  12. Dario S Zamboni
  13. Igor Kramnik
  14. Daniel A. Portnoy
  15. K Heran Darwin
  16. Russell E Vance  Is a corresponding author
  1. UC Berkeley, United States
  2. University of California, Berkeley, United States
  3. University of California at San Francisco, United States
  4. University of São Paulo, Brazil
  5. Boston University, Boston University School of Medicine, United States
  6. New York University Robert Grossman School of Medicine, United States

Abstract

Type I interferons (IFNs) are essential for anti-viral immunity, but often impair protective immune responses during bacterial infections. An important question is how type I IFNs are strongly induced during viral infections, and yet are appropriately restrained during bacterial infections. The Super susceptibility to tuberculosis 1 (Sst1) locus in mice confers resistance to diverse bacterial infections. Here we provide evidence that Sp140 is a gene encoded within the Sst1 locus that represses type I IFN transcription during bacterial infections. We generated Sp140-/- mice and find they are susceptible to infection by Legionella pneumophila and Mycobacterium tuberculosis. Susceptibility of Sp140-/- mice to bacterial infection was rescued by crosses to mice lacking the type I IFN receptor (Ifnar-/-). Our results implicate Sp140 as an important negative regulator of type I IFNs that is essential for resistance to bacterial infections.

Data availability

RNA-seq data is available at GEO, accession number GSE166114. Amplicon sequencing data is available at the SRA, BioProject accession number PRJNA698382

The following data sets were generated

Article and author information

Author details

  1. Daisy X Ji

    Molecular and Cell Biology, UC Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  2. Kristen C Witt

    Molecular and Cell Biology, UC Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8744-9457
  3. Dmitri I Kotov

    Molecular and Cell Biology, UC Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7843-1503
  4. Shally R Margolis

    Molecular and Cell Biology, UC Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  5. Alexander Louie

    Molecular and Cell Biology, UC Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  6. Victoria Chevée

    Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  7. Katherine J Chen

    Molecular and Cell Biology, UC Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  8. Moritz Gaidt

    Molecular and Cell Biology, UC Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  9. Harmandeep S Dhaliwal

    Cancer Research Laboratory, UC Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  10. Angus Y Lee

    Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  11. Stephen L Nishimura

    Pathology, University of California at San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  12. Dario S Zamboni

    Cell Biology, University of São Paulo, Ribeirão Preto, Brazil
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7856-7512
  13. Igor Kramnik

    The National Emerging Infectious Diseases Laboratories, Department of Medicine, Boston University, Boston University School of Medicine, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6511-9246
  14. Daniel A. Portnoy

    Cancer Research Laboratory, UC Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  15. K Heran Darwin

    Department of Microbiology, New York University Robert Grossman School of Medicine, New York, United States
    Competing interests
    No competing interests declared.
  16. Russell E Vance

    Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    rvance@berkeley.edu
    Competing interests
    Russell E Vance, consults for Ventus Therapeutics.Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6686-3912

Funding

National Institutes of Health (R37AI075039)

  • Russell E Vance

National Institutes of Health (R01AI155634)

  • Russell E Vance

Howard Hughes Medical Institute (Investigator Award)

  • Russell E Vance

National Institutes of Health (P01AI066302)

  • Russell E Vance

National Institutes of Health (P01AI066302)

  • Daniel A. Portnoy

National Institutes of Health (R01HL134183)

  • Stephen L Nishimura

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Animal studies were approved by the UC Berkeley Animal Care and Use Committee (current protocol number: AUP-2014-09-6665-2).

Copyright

© 2021, Ji et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,540
    views
  • 546
    downloads
  • 44
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daisy X Ji
  2. Kristen C Witt
  3. Dmitri I Kotov
  4. Shally R Margolis
  5. Alexander Louie
  6. Victoria Chevée
  7. Katherine J Chen
  8. Moritz Gaidt
  9. Harmandeep S Dhaliwal
  10. Angus Y Lee
  11. Stephen L Nishimura
  12. Dario S Zamboni
  13. Igor Kramnik
  14. Daniel A. Portnoy
  15. K Heran Darwin
  16. Russell E Vance
(2021)
Role of the transcriptional regulator SP140 in resistance to bacterial infections via repression of type I interferons
eLife 10:e67290.
https://doi.org/10.7554/eLife.67290

Share this article

https://doi.org/10.7554/eLife.67290

Further reading

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Lucia Csepregi, Kenneth Hoehn ... Sai T Reddy
    Research Article

    Diverse antibody repertoires spanning multiple lymphoid organs (i.e., bone marrow, spleen, lymph nodes) form the foundation of protective humoral immunity. Changes in their composition across lymphoid organs are a consequence of B-cell selection and migration events leading to a highly dynamic and unique physiological landscape of antibody repertoires upon antigenic challenge (e.g., vaccination). However, to what extent B cells encoding identical or similar antibody sequences (clones) are distributed across multiple lymphoid organs and how this is shaped by the strength of a humoral response remains largely unexplored. Here, we performed an in-depth systems analysis of antibody repertoires across multiple distinct lymphoid organs of immunized mice and discovered that organ-specific antibody repertoire features (i.e., germline V-gene usage and clonal expansion profiles) equilibrated upon a strong humoral response (multiple immunizations and high serum titers). This resulted in a surprisingly high degree of repertoire consolidation, characterized by highly connected and overlapping B-cell clones across multiple lymphoid organs. Finally, we revealed distinct physiological axes indicating clonal migrations and showed that antibody repertoire consolidation directly correlated with antigen specificity. Our study uncovered how a strong humoral response resulted in a more uniform but redundant physiological landscape of antibody repertoires, indicating that increases in antibody serum titers were a result of synergistic contributions from antigen-specific B-cell clones distributed across multiple lymphoid organs. Our findings provide valuable insights for the assessment and design of vaccine strategies.

    1. Immunology and Inflammation
    Yue Yang, Bin Huang ... Fangfang Zhang
    Research Article Updated

    Adipose tissue inflammation is now considered to be a key process underlying metabolic diseases in obese individuals. However, it remains unclear how adipose inflammation is initiated and maintained or the mechanism by which inflammation develops. We found that microRNA-802 (Mir802) expression in adipose tissue is progressively increased with the development of dietary obesity in obese mice and humans. The increasing trend of Mir802 preceded the accumulation of macrophages. Adipose tissue-specific knockout of Mir802 lowered macrophage infiltration and ameliorated systemic insulin resistance. Conversely, the specific overexpression of Mir802 in adipose tissue aggravated adipose inflammation in mice fed a high-fat diet. Mechanistically, Mir802 activates noncanonical and canonical NF-κB pathways by targeting its negative regulator, TRAF3. Next, NF-κB orchestrated the expression of chemokines and SREBP1, leading to strong recruitment and M1-like polarization of macrophages. Our findings indicate that Mir802 endows adipose tissue with the ability to recruit and polarize macrophages, which underscores Mir802 as an innovative and attractive candidate for miRNA-based immune therapy for adipose inflammation.