The effect of host community functional traits on plant disease risk varies along an elevational gradient

  1. Fletcher W Halliday  Is a corresponding author
  2. Mikko Jalo
  3. Anna-Liisa Laine
  1. University of Zürich, Switzerland
  2. University of Helsinki, Finland

Abstract

Quantifying the relative impact of environmental conditions and host community structure on disease is one of the greatest challenges of the 21st century, as both climate and biodiversity are changing at unprecedented rates. Both increasing temperature and shifting host communities towards more fast-paced life-history strategies are predicted to increase disease, yet their independent and interactive effects on disease in natural communities remains unknown. Here, we address this challenge by surveying foliar disease symptoms in 220, 0.5 meter-diameter herbaceous plant communities along a 1100-meter elevational gradient. We find that increasing temperature associated with lower elevation can increase disease by (1) relaxing constraints on parasite growth and reproduction, (2) determining which host species are present in a given location, and (3) strengthening the positive effect of host community pace-of-life on disease. These results provide the first field evidence, under natural conditions, that environmental gradients can alter how host community structure affects disease.

Data availability

The data and code supporting the results are available on Figshare (DOI: 10.6084/m9.figshare.14058059) and Github (https://github.com/fhalliday/Calanda19)

The following data sets were generated

Article and author information

Author details

  1. Fletcher W Halliday

    Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zurich, Switzerland
    For correspondence
    Fletcher.w.halliday@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3953-0861
  2. Mikko Jalo

    Faculty of Biological and Environmental sciences, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  3. Anna-Liisa Laine

    Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0703-5850

Funding

Academy of Finland (296686)

  • Anna-Liisa Laine

European Research Council (724508)

  • Anna-Liisa Laine

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Yuxin Chen, Xiamen University, China

Version history

  1. Received: February 8, 2021
  2. Accepted: May 10, 2021
  3. Accepted Manuscript published: May 13, 2021 (version 1)
  4. Version of Record published: June 16, 2021 (version 2)

Copyright

© 2021, Halliday et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,881
    views
  • 242
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fletcher W Halliday
  2. Mikko Jalo
  3. Anna-Liisa Laine
(2021)
The effect of host community functional traits on plant disease risk varies along an elevational gradient
eLife 10:e67340.
https://doi.org/10.7554/eLife.67340

Share this article

https://doi.org/10.7554/eLife.67340

Further reading

    1. Ecology
    Jiayun Li, Paul Holford ... Xiaoge Nian
    Research Article

    Diaphorina citri serves as the primary vector for ‘Candidatus Liberibacter asiaticus (CLas),’ the bacterium associated with the severe Asian form of huanglongbing. CLas-positive D. citri are more fecund than their CLas-negative counterparts and require extra energy expenditure. Therefore, understanding the molecular mechanisms linking metabolism and reproduction is of particular importance. In this study, we found adipokinetic hormone (DcAKH) and its receptor (DcAKHR) were essential for increasing lipid metabolism and fecundity in response to CLas infection in D. citri. Knockdown of DcAKH and DcAKHR not only resulted in the accumulation of triacylglycerol and a decline of glycogen, but also significantly decreased fecundity and CLas titer in ovaries. Combined in vivo and in vitro experiments showed that miR-34 suppresses DcAKHR expression by binding to its 3’ untranslated region, whilst overexpression of miR-34 resulted in a decline of DcAKHR expression and CLas titer in ovaries and caused defects that mimicked DcAKHR knockdown phenotypes. Additionally, knockdown of DcAKH and DcAKHR significantly reduced juvenile hormone (JH) titer and JH signaling pathway genes in fat bodies and ovaries, including the JH receptor, methoprene-tolerant (DcMet), and the transcription factor, Krüppel homolog 1 (DcKr-h1), that acts downstream of it, as well as the egg development related genes vitellogenin 1-like (DcVg-1-like), vitellogenin A1-like (DcVg-A1-like) and the vitellogenin receptor (DcVgR). As a result, CLas hijacks AKH/AKHR-miR-34-JH signaling to improve D. citri lipid metabolism and fecundity, while simultaneously increasing the replication of CLas, suggesting a mutualistic interaction between CLas and D. citri ovaries.

    1. Ecology
    Xueyou Li, William V Bleisch ... Xue-Long Jiang
    Research Article

    Spatial and temporal associations between sympatric species underpin biotic interactions, structure ecological assemblages, and sustain ecosystem functioning and stability. However, the resilience of interspecific spatiotemporal associations to human activity remains poorly understood, particularly in mountain forests where anthropogenic impacts are often pervasive. Here, we applied context-dependent Joint Species Distribution Models to a systematic camera-trap survey dataset from a global biodiversity hotspot in eastern Himalayas to understand how prominent human activities in mountain forests influence species associations within terrestrial mammal communities. We obtained 10,388 independent detections of 17 focal species (12 carnivores and five ungulates) from 322 stations over 43,163 camera days of effort. We identified a higher incidence of positive associations in habitats with higher levels of human modification (87%) and human presence (83%) compared to those located in habitats with lower human modification (64%) and human presence (65%) levels. We also detected a significant reduction of pairwise encounter time at increasing levels of human disturbance, corresponding to more frequent encounters between pairs of species. Our findings indicate that human activities can push mammals together into more frequent encounters and associations, which likely influences the coexistence and persistence of wildlife, with potential far-ranging ecological consequences.