Abstract

The molecular mechanisms underlying the diversity of cortical glutamatergic synapses is still incompletely understood. Here, we tested the hypothesis that presynaptic active zones (AZs) are constructed from molecularly uniform, independent release sites (RSs), the number of which scales linearly with the AZ size. Paired recordings between hippocampal CA1 pyramidal cells and fast-spiking interneurons in acute slices from adult mice followed by quantal analysis demonstrate large variability in the number of RSs (N) at these connections. High resolution molecular analysis of functionally characterized synapses reveals variability in the content of one of the key vesicle priming factors – Munc13-1 – in AZs that possess the same N. Replica immunolabeling also shows a 3-fold variability in the total Munc13-1 content of AZs of identical size, and a 4-fold variability in the size and density of Munc13-1 clusters within the AZs. Our results provide evidence for quantitative molecular heterogeneity of RSs and support a model in which the AZ is built up from variable numbers of molecularly heterogeneous, but independent RSs.

Data availability

Source data have been provided for all figures.

Article and author information

Author details

  1. Maria Rita Karlocai

    Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  2. Judit Heredi

    Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  3. Tünde Benedek

    Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  4. Noemi Holderith

    Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0024-3980
  5. Andrea Lorincz

    Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  6. Zoltan Nusser

    Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Budapest, Hungary
    For correspondence
    nusser.zoltan@koki.mta.hu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7004-4111

Funding

European Research Council (ERC-AG 787157)

  • Zoltan Nusser

Hungarian National Brain Research grant

  • Zoltan Nusser

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All the experiments were carried out according to the regulations of the Hungarian Act of Animal Care and Experimentation 40/2013 (II.14) and were reviewed and approved by the Animal Committee of the Institute of Experimental Medicine, Budapest.

Copyright

© 2021, Karlocai et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,755
    views
  • 317
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maria Rita Karlocai
  2. Judit Heredi
  3. Tünde Benedek
  4. Noemi Holderith
  5. Andrea Lorincz
  6. Zoltan Nusser
(2021)
Variability in the Munc13-1 content of excitatory release site
eLife 10:e67468.
https://doi.org/10.7554/eLife.67468

Share this article

https://doi.org/10.7554/eLife.67468

Further reading

    1. Neuroscience
    Roshani Nhuchhen Pradhan, Craig Montell, Youngseok Lee
    Research Article

    The question as to whether animals taste cholesterol taste is not resolved. This study investigates whether the fruit fly, Drosophila melanogaster, is capable of detecting cholesterol through their gustatory system. We found that flies are indifferent to low levels of cholesterol and avoid higher levels. The avoidance is mediated by gustatory receptor neurons (GRNs), demonstrating that flies can taste cholesterol. The cholesterol-responsive GRNs comprise a subset that also responds to bitter substances. Cholesterol detection depends on five ionotropic receptor (IR) family members, and disrupting any of these genes impairs the flies' ability to avoid cholesterol. Ectopic expressions of these IRs in GRNs reveals two classes of cholesterol receptors, each with three shared IRs and one unique subunit. Additionally, expressing cholesterol receptors in sugar-responsive GRNs confers attraction to cholesterol. This study reveals that flies can taste cholesterol, and that the detection depends on IRs in GRNs.

    1. Neuroscience
    Kayson Fakhar, Fatemeh Hadaeghi ... Claus C Hilgetag
    Research Article

    Efficient communication in brain networks is foundational for cognitive function and behavior. However, how communication efficiency is defined depends on the assumed model of signaling dynamics, e.g., shortest path signaling, random walker navigation, broadcasting, and diffusive processes. Thus, a general and model-agnostic framework for characterizing optimal neural communication is needed. We address this challenge by assigning communication efficiency through a virtual multi-site lesioning regime combined with game theory, applied to large-scale models of human brain dynamics. Our framework quantifies the exact influence each node exerts over every other, generating optimal influence maps given the underlying model of neural dynamics. These descriptions reveal how communication patterns unfold if regions are set to maximize their influence over one another. Comparing these maps with a variety of brain communication models showed that optimal communication closely resembles a broadcasting regime in which regions leverage multiple parallel channels for information dissemination. Moreover, we found that the brain’s most influential regions are its rich-club, exploiting their topological vantage point by broadcasting across numerous pathways that enhance their reach even if the underlying connections are weak. Altogether, our work provides a rigorous and versatile framework for characterizing optimal brain communication, and uncovers the most influential brain regions, and the topological features underlying their influence.