Effects of arousal and movement on secondary somatosensory and visual thalamus

  1. Gordon H Petty
  2. Amanda K Kinnischtzke
  3. Y Kate Hong
  4. Randy M Bruno  Is a corresponding author
  1. Columbia University, United States

Abstract

Neocortical sensory areas have associated primary and secondary thalamic nuclei. While primary nuclei transmit sensory information to cortex, secondary nuclei remain poorly understood. We recorded juxtasomally from secondary somatosensory (POm) and visual (LP) nuclei of awake mice while tracking whisking and pupil size. POm activity correlated with whisking, but not precise whisker kinematics. This coarse movement modulation persisted after facial paralysis and thus was not due to sensory reafference. This phenomenon also continued during optogenetic silencing of somatosensory and motor cortex and after lesion of superior colliculus, ruling out a motor efference copy mechanism. Whisking and pupil dilation were strongly correlated, possibly reflecting arousal. Indeed LP, which is not part of the whisker system, tracked whisking equally well, further indicating that POm activity does not encode whisker movement per se. The semblance of movement-related activity is likely instead a global effect of arousal on both nuclei. We conclude that secondary thalamus monitors behavioral state, rather than movement, and may exist to alter cortical activity accordingly.

Data availability

Data have been deposited in Dryad.

The following data sets were generated

Article and author information

Author details

  1. Gordon H Petty

    Department of Neuroscience, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Amanda K Kinnischtzke

    Department of Neuroscience, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Y Kate Hong

    Department of Neuroscience, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Randy M Bruno

    Department of Neuroscience, Columbia University, New York, United States
    For correspondence
    randybruno@columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5122-4632

Funding

National Institute of Neurological Disorders and Stroke (R01 NS094659)

  • Randy M Bruno

National Institute of Neurological Disorders and Stroke (R01 NS069679)

  • Randy M Bruno

National Eye Institute (T32 EY013933)

  • Gordon H Petty
  • Amanda K Kinnischtzke

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments complied with the NIH Guide for the Care and Use of Laboratory Animals and were approved by the Institutional Animal Care and Use Committee of Columbia University (protocol AC-AAAY8462).

Copyright

© 2021, Petty et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,471
    views
  • 313
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gordon H Petty
  2. Amanda K Kinnischtzke
  3. Y Kate Hong
  4. Randy M Bruno
(2021)
Effects of arousal and movement on secondary somatosensory and visual thalamus
eLife 10:e67611.
https://doi.org/10.7554/eLife.67611

Share this article

https://doi.org/10.7554/eLife.67611