A G protein-coupled receptor is required in cartilaginous and dense connective tissues to maintain spine alignment

  1. Zhaoyang Liu
  2. Amro A Hussien
  3. Yunjia Wang
  4. Terry Heckmann
  5. Roberto Gonzalez
  6. Courtney M Karner
  7. Jess G Snedeker
  8. Ryan S Gray  Is a corresponding author
  1. University of Texas at Austin, United States
  2. University of Zurich, Switzerland
  3. Central South University, China
  4. University of Texas at Austin - Dell Pediatrics Research Institute, United States
  5. University of Texas Southwestern Medical Center, United States
  6. ETH Zurich, Switzerland

Abstract

Adolescent idiopathic scoliosis (AIS) is the most common spine disorder affecting children worldwide, yet little is known about the pathogenesis of this disorder. Here, we demonstrate that genetic regulation of structural components of the axial skeleton, the intervertebral discs, and dense connective tissues (i.e., ligaments and tendons) are essential for the maintenance of spinal alignment. We show that the adhesion G protein-coupled receptor ADGRG6, previously implicated in human AIS association studies, is required in these tissues to maintain typical spine alignment in mice. Furthermore, we show that ADGRG6 regulates biomechanical properties of tendon and stimulates CREB signaling governing gene expression in cartilaginous tissues of the spine. Treatment with a cAMP agonist could mirror aspects of receptor function in culture, thus defining core pathways for regulating these axial cartilaginous and connective tissues. As ADGRG6 is a key gene involved in human AIS, these findings open up novel therapeutic opportunities for human scoliosis.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Zhaoyang Liu

    Nutritional Sciences/ Pediatrics, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8032-1167
  2. Amro A Hussien

    Department of Orthopedics, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9324-9360
  3. Yunjia Wang

    Department of Spine Surgery and Orthopaedics, Central South University, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Terry Heckmann

    Pediatrics, University of Texas at Austin - Dell Pediatrics Research Institute, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Roberto Gonzalez

    Pediatrics, University of Texas at Austin - Dell Pediatrics Research Institute, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Courtney M Karner

    Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0387-4486
  7. Jess G Snedeker

    Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Ryan S Gray

    Nutritional Sciences/ Pediatrics, University of Texas at Austin - Dell Pediatrics Research Institute, Austin, United States
    For correspondence
    ryan.gray@austin.utexas.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9668-6497

Funding

NIH Office of the Director (R01AR072009)

  • Ryan S Gray

NIH Office of the Director (R01AR071967)

  • Courtney M Karner

NIH Office of the Director (R01AR076325)

  • Courtney M Karner

NIH Office of the Director (F32AR073648)

  • Zhaoyang Liu

Vontobel-Stiftung

  • Jess G Snedeker

NIH Office of the Director (K99AR077090)

  • Zhaoyang Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (AUP-2018-00276) of the University of Texas at Austin.

Copyright

© 2021, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,381
    views
  • 239
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhaoyang Liu
  2. Amro A Hussien
  3. Yunjia Wang
  4. Terry Heckmann
  5. Roberto Gonzalez
  6. Courtney M Karner
  7. Jess G Snedeker
  8. Ryan S Gray
(2021)
A G protein-coupled receptor is required in cartilaginous and dense connective tissues to maintain spine alignment
eLife 10:e67781.
https://doi.org/10.7554/eLife.67781

Share this article

https://doi.org/10.7554/eLife.67781

Further reading

    1. Developmental Biology
    Michele Bertacchi, Gwendoline Maharaux ... Michèle Studer
    Research Article Updated

    The morphogen FGF8 establishes graded positional cues imparting regional cellular responses via modulation of early target genes. The roles of FGF signaling and its effector genes remain poorly characterized in human experimental models mimicking early fetal telencephalic development. We used hiPSC-derived cerebral organoids as an in vitro platform to investigate the effect of FGF8 signaling on neural identity and differentiation. We found that FGF8 treatment increases cellular heterogeneity, leading to distinct telencephalic and mesencephalic-like domains that co-develop in multi-regional organoids. Within telencephalic regions, FGF8 affects the anteroposterior and dorsoventral identity of neural progenitors and the balance between GABAergic and glutamatergic neurons, thus impacting spontaneous neuronal network activity. Moreover, FGF8 efficiently modulates key regulators responsible for several human neurodevelopmental disorders. Overall, our results show that FGF8 signaling is directly involved in both regional patterning and cellular diversity in human cerebral organoids and in modulating genes associated with normal and pathological neural development.

    1. Developmental Biology
    Shannon H Carroll, Sogand Schafer ... Eric C Liao
    Research Article

    Wnt signaling plays crucial roles in embryonic patterning including the regulation of convergent extension (CE) during gastrulation, the establishment of the dorsal axis, and later, craniofacial morphogenesis. Further, Wnt signaling is a crucial regulator of craniofacial morphogenesis. The adapter proteins Dact1 and Dact2 modulate the Wnt signaling pathway through binding to Disheveled. However, the distinct relative functions of Dact1 and Dact2 during embryogenesis remain unclear. We found that dact1 and dact2 genes have dynamic spatiotemporal expression domains that are reciprocal to one another suggesting distinct functions during zebrafish embryogenesis. Both dact1 and dact2 contribute to axis extension, with compound mutants exhibiting a similar CE defect and craniofacial phenotype to the wnt11f2 mutant. Utilizing single-cell RNAseq and an established noncanonical Wnt pathway mutant with a shortened axis (gpc4), we identified dact1/2-specific roles during early development. Comparative whole transcriptome analysis between wildtype and gpc4 and wildtype and dact1/2 compound mutants revealed a novel role for dact1/2 in regulating the mRNA expression of the classical calpain capn8. Overexpression of capn8 phenocopies dact1/2 craniofacial dysmorphology. These results identify a previously unappreciated role of capn8 and calcium-dependent proteolysis during embryogenesis. Taken together, our findings highlight the distinct and overlapping roles of dact1 and dact2 in embryonic craniofacial development, providing new insights into the multifaceted regulation of Wnt signaling.