A G protein-coupled receptor is required in cartilaginous and dense connective tissues to maintain spine alignment

  1. Zhaoyang Liu
  2. Amro A Hussien
  3. Yunjia Wang
  4. Terry Heckmann
  5. Roberto Gonzalez
  6. Courtney M Karner
  7. Jess G Snedeker
  8. Ryan S Gray  Is a corresponding author
  1. University of Texas at Austin, United States
  2. University of Zurich, Switzerland
  3. Central South University, China
  4. University of Texas at Austin - Dell Pediatrics Research Institute, United States
  5. University of Texas Southwestern Medical Center, United States
  6. ETH Zurich, Switzerland

Abstract

Adolescent idiopathic scoliosis (AIS) is the most common spine disorder affecting children worldwide, yet little is known about the pathogenesis of this disorder. Here, we demonstrate that genetic regulation of structural components of the axial skeleton, the intervertebral discs, and dense connective tissues (i.e., ligaments and tendons) are essential for the maintenance of spinal alignment. We show that the adhesion G protein-coupled receptor ADGRG6, previously implicated in human AIS association studies, is required in these tissues to maintain typical spine alignment in mice. Furthermore, we show that ADGRG6 regulates biomechanical properties of tendon and stimulates CREB signaling governing gene expression in cartilaginous tissues of the spine. Treatment with a cAMP agonist could mirror aspects of receptor function in culture, thus defining core pathways for regulating these axial cartilaginous and connective tissues. As ADGRG6 is a key gene involved in human AIS, these findings open up novel therapeutic opportunities for human scoliosis.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Zhaoyang Liu

    Nutritional Sciences/ Pediatrics, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8032-1167
  2. Amro A Hussien

    Department of Orthopedics, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9324-9360
  3. Yunjia Wang

    Department of Spine Surgery and Orthopaedics, Central South University, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Terry Heckmann

    Pediatrics, University of Texas at Austin - Dell Pediatrics Research Institute, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Roberto Gonzalez

    Pediatrics, University of Texas at Austin - Dell Pediatrics Research Institute, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Courtney M Karner

    Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0387-4486
  7. Jess G Snedeker

    Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Ryan S Gray

    Nutritional Sciences/ Pediatrics, University of Texas at Austin - Dell Pediatrics Research Institute, Austin, United States
    For correspondence
    ryan.gray@austin.utexas.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9668-6497

Funding

NIH Office of the Director (R01AR072009)

  • Ryan S Gray

NIH Office of the Director (R01AR071967)

  • Courtney M Karner

NIH Office of the Director (R01AR076325)

  • Courtney M Karner

NIH Office of the Director (F32AR073648)

  • Zhaoyang Liu

Vontobel-Stiftung

  • Jess G Snedeker

NIH Office of the Director (K99AR077090)

  • Zhaoyang Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (AUP-2018-00276) of the University of Texas at Austin.

Copyright

© 2021, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,437
    views
  • 246
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhaoyang Liu
  2. Amro A Hussien
  3. Yunjia Wang
  4. Terry Heckmann
  5. Roberto Gonzalez
  6. Courtney M Karner
  7. Jess G Snedeker
  8. Ryan S Gray
(2021)
A G protein-coupled receptor is required in cartilaginous and dense connective tissues to maintain spine alignment
eLife 10:e67781.
https://doi.org/10.7554/eLife.67781

Share this article

https://doi.org/10.7554/eLife.67781

Further reading

    1. Developmental Biology
    Mengjie Li, Aiguo Tian, Jin Jiang
    Research Advance

    Stem cell self-renewal often relies on asymmetric fate determination governed by niche signals and/or cell-intrinsic factors but how these regulatory mechanisms cooperate to promote asymmetric fate decision remains poorly understood. In adult Drosophila midgut, asymmetric Notch (N) signaling inhibits intestinal stem cell (ISC) self-renewal by promoting ISC differentiation into enteroblast (EB). We have previously shown that epithelium-derived Bone Morphogenetic Protein (BMP) promotes ISC self-renewal by antagonizing N pathway activity (Tian and Jiang, 2014). Here, we show that loss of BMP signaling results in ectopic N pathway activity even when the N ligand Delta (Dl) is depleted, and that the N inhibitor Numb acts in parallel with BMP signaling to ensure a robust ISC self-renewal program. Although Numb is asymmetrically segregated in about 80% of dividing ISCs, its activity is largely dispensable for ISC fate determination under normal homeostasis. However, Numb becomes crucial for ISC self-renewal when BMP signaling is compromised. Whereas neither Mad RNA interference nor its hypomorphic mutation led to ISC loss, inactivation of Numb in these backgrounds resulted in stem cell loss due to precocious ISC-to-EB differentiation. Furthermore, we find that numb mutations resulted in stem cell loss during midgut regeneration in response to epithelial damage that causes fluctuation in BMP pathway activity, suggesting that the asymmetrical segregation of Numb into the future ISC may provide a fail-save mechanism for ISC self-renewal by offsetting BMP pathway fluctuation, which is important for ISC maintenance in regenerative guts.

    1. Developmental Biology
    Eric R Brooks, Andrew R Moorman ... Jennifer A Zallen
    Tools and Resources

    The formation of the mammalian brain requires regionalization and morphogenesis of the cranial neural plate, which transforms from an epithelial sheet into a closed tube that provides the structural foundation for neural patterning and circuit formation. Sonic hedgehog (SHH) signaling is important for cranial neural plate patterning and closure, but the transcriptional changes that give rise to the spatially regulated cell fates and behaviors that build the cranial neural tube have not been systematically analyzed. Here, we used single-cell RNA sequencing to generate an atlas of gene expression at six consecutive stages of cranial neural tube closure in the mouse embryo. Ordering transcriptional profiles relative to the major axes of gene expression predicted spatially regulated expression of 870 genes along the anterior-posterior and mediolateral axes of the cranial neural plate and reproduced known expression patterns with over 85% accuracy. Single-cell RNA sequencing of embryos with activated SHH signaling revealed distinct SHH-regulated transcriptional programs in the developing forebrain, midbrain, and hindbrain, suggesting a complex interplay between anterior-posterior and mediolateral patterning systems. These results define a spatiotemporally resolved map of gene expression during cranial neural tube closure and provide a resource for investigating the transcriptional events that drive early mammalian brain development.