Pak1 and PP2A antagonize aPKC function to support cortical tension induced by the Crumbs-Yurt complex

  1. Cornelia Biehler
  2. Katheryn E Rothenberg
  3. Alexandra Jette
  4. Helori-Mael Gaude
  5. Rodrigo Fernandez-Gonzalez
  6. Patrick Laprise  Is a corresponding author
  1. Universite Laval, Canada
  2. University of Toronto, Canada
  3. Université Laval, Canada

Abstract

The Drosophila polarity protein Crumbs is essential for the establishment and growth of the apical domain in epithelial cells. The protein Yurt limits the ability of Crumbs to promote apical membrane growth, thereby defining proper apical/lateral membrane ratio that is crucial for forming and maintaining complex epithelial structures such as tubes or acini. Here, we show that Yurt also increases Myosin-dependent cortical tension downstream of Crumbs. Yurt overexpression thus induces apical constriction in epithelial cells. The kinase aPKC phosphorylates Yurt, thereby dislodging the latter from the apical domain and releasing apical tension. In contrast, the kinase Pak1 promotes Yurt dephosphorylation through activation of the phosphatase PP2A. The Pak1-PP2A module thus opposes aPKC function and supports Yurt-induced apical constriction. Hence, the complex interplay between Yurt, aPKC, Pak1 and PP2A contributes to the functional plasticity of Crumbs. Overall, our data increase our understanding of how proteins sustaining epithelial cell polarization and Myosin-dependent cell contractility interact with one another to control epithelial tissue architecture.

Data availability

Source data have been provided for all figures and are available as supporting files.

Article and author information

Author details

  1. Cornelia Biehler

    BMBMP, Universite Laval, Quebec, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Katheryn E Rothenberg

    CSB, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8191-7528
  3. Alexandra Jette

    BMBMP, Universite Laval, Wuebec, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5423-2374
  4. Helori-Mael Gaude

    BMBMP, Universite Laval, Quebec, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Rodrigo Fernandez-Gonzalez

    Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0770-744X
  6. Patrick Laprise

    BMBMP, Université Laval, Quebec, Canada
    For correspondence
    Patrick.Laprise@crchudequebec.ulaval.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9785-4376

Funding

Canadian Institutes of Health Research (Operating grant,MOP-142236)

  • Patrick Laprise

Canadian Institutes of Health Research (Operating grant,MOP-156279)

  • Rodrigo Fernandez-Gonzalez

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michel Bagnat, Duke University, United States

Version history

  1. Received: March 2, 2021
  2. Accepted: June 30, 2021
  3. Accepted Manuscript published: July 2, 2021 (version 1)
  4. Version of Record published: July 15, 2021 (version 2)

Copyright

© 2021, Biehler et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 993
    Page views
  • 213
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Cornelia Biehler
  2. Katheryn E Rothenberg
  3. Alexandra Jette
  4. Helori-Mael Gaude
  5. Rodrigo Fernandez-Gonzalez
  6. Patrick Laprise
(2021)
Pak1 and PP2A antagonize aPKC function to support cortical tension induced by the Crumbs-Yurt complex
eLife 10:e67999.
https://doi.org/10.7554/eLife.67999

Further reading

    1. Developmental Biology
    2. Neuroscience
    Xiong Yang, Rong Wan ... Ke Tang
    Research Article

    The hippocampus executes crucial functions from declarative memory to adaptive behaviors associated with cognition and emotion. However, the mechanisms of how morphogenesis and functions along the hippocampal dorsoventral axis are differentiated and integrated are still largely unclear. Here, we show that Nr2f1 and Nr2f2 genes are distinctively expressed in the dorsal and ventral hippocampus, respectively. The loss of Nr2f2 results in ectopic CA1/CA3 domains in the ventral hippocampus. The deficiency of Nr2f1 leads to the failed specification of dorsal CA1, among which there are place cells. The deletion of both Nr2f genes causes almost agenesis of the hippocampus with abnormalities of trisynaptic circuit and adult neurogenesis. Moreover, Nr2f1/2 may cooperate to guarantee appropriate morphogenesis and function of the hippocampus by regulating the Lhx5-Lhx2 axis. Our findings revealed a novel mechanism that Nr2f1 and Nr2f2 converge to govern the differentiation and integration of distinct characteristics of the hippocampus in mice.

    1. Developmental Biology
    2. Evolutionary Biology
    Nico Posnien, Vera S Hunnekuhl, Gregor Bucher
    Review Article

    Gene expression has been employed for homologizing body regions across bilateria. The molecular comparison of vertebrate and fly brains has led to a number of disputed homology hypotheses. Data from the fly Drosophila melanogaster have recently been complemented by extensive data from the red flour beetle Tribolium castaneum with its more insect-typical development. In this review, we revisit the molecular mapping of the neuroectoderm of insects and vertebrates to reconsider homology hypotheses. We claim that the protocerebrum is non-segmental and homologous to the vertebrate fore- and midbrain. The boundary between antennal and ocular regions correspond to the vertebrate mid-hindbrain boundary while the deutocerebrum represents the anterior-most ganglion with serial homology to the trunk. The insect head placode is shares common embryonic origin with the vertebrate adenohypophyseal placode. Intriguingly, vertebrate eyes develop from a different region compared to the insect compound eyes calling organ homology into question. Finally, we suggest a molecular re-definition of the classic concepts of archi- and prosocerebrum.