Dopamine differentially modulates the size of projection neuron ensembles in the intact and dopamine-depleted striatum

  1. Marta Maltese
  2. Jeffrey R March
  3. Alexander G Bashaw
  4. Nicolas X Tritsch  Is a corresponding author
  1. New York University Grossman School of Medicine, United States

Abstract

Dopamine (DA) is a critical modulator of brain circuits that control voluntary movements, but our understanding of its influence on the activity of target neurons in vivo remains limited. Here, we use two-photon Ca2+ imaging to monitor the activity of direct and indirect-pathway spiny projection neurons (SPNs) simultaneously in the striatum of behaving mice during acute and prolonged manipulations of DA signaling. We find that increasing and decreasing DA biases striatal activity towards the direct and indirect pathways, respectively, by changing the overall number of SPNs recruited during behavior in a manner not predicted by existing models of DA function. This modulation is drastically altered in a model of Parkinson's disease. Our results reveal a previously unappreciated population-level influence of DA on striatal output and provide novel insights into the pathophysiology of Parkinson's disease.

Data availability

Source data and code used for analyses are available online (https://github.com/TritschLab).

Article and author information

Author details

  1. Marta Maltese

    Neuroscience and Physiology, New York University Grossman School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jeffrey R March

    Neuroscience and Physiology, New York University Grossman School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexander G Bashaw

    Neuroscience and Physiology, New York University Grossman School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Nicolas X Tritsch

    Neuroscience and Physiology, New York University Grossman School of Medicine, New York, United States
    For correspondence
    nicolas.tritsch@nyulangone.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3181-7681

Funding

National Institutes of Health (R00NS087098)

  • Nicolas X Tritsch

National Institutes of Health (DP2NS105553)

  • Nicolas X Tritsch

Alfred P. Sloan Foundation

  • Nicolas X Tritsch

Dana Foundation

  • Nicolas X Tritsch

Whitehall Foundation

  • Nicolas X Tritsch

Leon Levy Foundation

  • Nicolas X Tritsch

Marlene and Paolo Fresco Institute

  • Marta Maltese

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All procedures were carried out according to protocols approved by the NYU Langone Health Institutional Animal Care and Use Committee (protocol #170123).

Reviewing Editor

  1. Nicole Calakos, Duke University Medical Center, United States

Version history

  1. Received: March 3, 2021
  2. Accepted: May 12, 2021
  3. Accepted Manuscript published: May 13, 2021 (version 1)
  4. Version of Record published: May 28, 2021 (version 2)

Copyright

© 2021, Maltese et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,757
    Page views
  • 650
    Downloads
  • 17
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marta Maltese
  2. Jeffrey R March
  3. Alexander G Bashaw
  4. Nicolas X Tritsch
(2021)
Dopamine differentially modulates the size of projection neuron ensembles in the intact and dopamine-depleted striatum
eLife 10:e68041.
https://doi.org/10.7554/eLife.68041

Share this article

https://doi.org/10.7554/eLife.68041

Further reading

    1. Developmental Biology
    2. Neuroscience
    Athina Keramidioti, Sandra Schneid ... Charles N David
    Research Article

    The Hydra nervous system is the paradigm of a ‘simple nerve net’. Nerve cells in Hydra, as in many cnidarian polyps, are organized in a nerve net extending throughout the body column. This nerve net is required for control of spontaneous behavior: elimination of nerve cells leads to polyps that do not move and are incapable of capturing and ingesting prey (Campbell, 1976). We have re-examined the structure of the Hydra nerve net by immunostaining fixed polyps with a novel antibody that stains all nerve cells in Hydra. Confocal imaging shows that there are two distinct nerve nets, one in the ectoderm and one in the endoderm, with the unexpected absence of nerve cells in the endoderm of the tentacles. The nerve nets in the ectoderm and endoderm do not contact each other. High-resolution TEM (transmission electron microscopy) and serial block face SEM (scanning electron microscopy) show that the nerve nets consist of bundles of parallel overlapping neurites. Results from transgenic lines show that neurite bundles include different neural circuits and hence that neurites in bundles require circuit-specific recognition. Nerve cell-specific innexins indicate that gap junctions can provide this specificity. The occurrence of bundles of neurites supports a model for continuous growth and differentiation of the nerve net by lateral addition of new nerve cells to the existing net. This model was confirmed by tracking newly differentiated nerve cells.

    1. Neuroscience
    Anna-Maria Grob, Hendrik Heinbockel ... Lars Schwabe
    Research Article

    Maintaining an accurate model of the world relies on our ability to update memory representations in light of new information. Previous research on the integration of new information into memory mainly focused on the hippocampus. Here, we hypothesized that the angular gyrus, known to be involved in episodic memory and imagination, plays a pivotal role in the insight-driven reconfiguration of memory representations. To test this hypothesis, participants received continuous theta burst stimulation (cTBS) over the left angular gyrus or sham stimulation before gaining insight into the relationship between previously separate life-like animated events in a narrative-insight task. During this task, participants also underwent EEG recording and their memory for linked and non-linked events was assessed shortly thereafter. Our results show that cTBS to the angular gyrus decreased memory for the linking events and reduced the memory advantage for linked relative to non-linked events. At the neural level, cTBS targeting the angular gyrus reduced centro-temporal coupling with frontal regions and abolished insight-induced neural representational changes for events linked via imagination, indicating impaired memory reconfiguration. Further, the cTBS group showed representational changes for non-linked events that resembled the patterns observed in the sham group for the linked events, suggesting failed pruning of the narrative in memory. Together, our findings demonstrate a causal role of the left angular gyrus in insight-related memory reconfigurations.