Dopamine differentially modulates the size of projection neuron ensembles in the intact and dopamine-depleted striatum

  1. Marta Maltese
  2. Jeffrey R March
  3. Alexander G Bashaw
  4. Nicolas X Tritsch  Is a corresponding author
  1. New York University Grossman School of Medicine, United States

Abstract

Dopamine (DA) is a critical modulator of brain circuits that control voluntary movements, but our understanding of its influence on the activity of target neurons in vivo remains limited. Here, we use two-photon Ca2+ imaging to monitor the activity of direct and indirect-pathway spiny projection neurons (SPNs) simultaneously in the striatum of behaving mice during acute and prolonged manipulations of DA signaling. We find that increasing and decreasing DA biases striatal activity towards the direct and indirect pathways, respectively, by changing the overall number of SPNs recruited during behavior in a manner not predicted by existing models of DA function. This modulation is drastically altered in a model of Parkinson's disease. Our results reveal a previously unappreciated population-level influence of DA on striatal output and provide novel insights into the pathophysiology of Parkinson's disease.

Data availability

Source data and code used for analyses are available online (https://github.com/TritschLab).

Article and author information

Author details

  1. Marta Maltese

    Neuroscience and Physiology, New York University Grossman School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jeffrey R March

    Neuroscience and Physiology, New York University Grossman School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexander G Bashaw

    Neuroscience and Physiology, New York University Grossman School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Nicolas X Tritsch

    Neuroscience and Physiology, New York University Grossman School of Medicine, New York, United States
    For correspondence
    nicolas.tritsch@nyulangone.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3181-7681

Funding

National Institutes of Health (R00NS087098)

  • Nicolas X Tritsch

National Institutes of Health (DP2NS105553)

  • Nicolas X Tritsch

Alfred P. Sloan Foundation

  • Nicolas X Tritsch

Dana Foundation

  • Nicolas X Tritsch

Whitehall Foundation

  • Nicolas X Tritsch

Leon Levy Foundation

  • Nicolas X Tritsch

Marlene and Paolo Fresco Institute

  • Marta Maltese

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Nicole Calakos, Duke University Medical Center, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All procedures were carried out according to protocols approved by the NYU Langone Health Institutional Animal Care and Use Committee (protocol #170123).

Version history

  1. Received: March 3, 2021
  2. Accepted: May 12, 2021
  3. Accepted Manuscript published: May 13, 2021 (version 1)
  4. Version of Record published: May 28, 2021 (version 2)

Copyright

© 2021, Maltese et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,973
    views
  • 681
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marta Maltese
  2. Jeffrey R March
  3. Alexander G Bashaw
  4. Nicolas X Tritsch
(2021)
Dopamine differentially modulates the size of projection neuron ensembles in the intact and dopamine-depleted striatum
eLife 10:e68041.
https://doi.org/10.7554/eLife.68041

Share this article

https://doi.org/10.7554/eLife.68041

Further reading

    1. Neuroscience
    John J Stout, Allison E George ... Amy L Griffin
    Research Article

    Functional interactions between the prefrontal cortex and hippocampus, as revealed by strong oscillatory synchronization in the theta (6–11 Hz) frequency range, correlate with memory-guided decision-making. However, the degree to which this form of long-range synchronization influences memory-guided choice remains unclear. We developed a brain-machine interface that initiated task trials based on the magnitude of prefrontal-hippocampal theta synchronization, then measured choice outcomes. Trials initiated based on strong prefrontal-hippocampal theta synchrony were more likely to be correct compared to control trials on both working memory-dependent and -independent tasks. Prefrontal-thalamic neural interactions increased with prefrontal-hippocampal synchrony and optogenetic activation of the ventral midline thalamus primarily entrained prefrontal theta rhythms, but dynamically modulated synchrony. Together, our results show that prefrontal-hippocampal theta synchronization leads to a higher probability of a correct choice and strengthens prefrontal-thalamic dialogue. Our findings reveal new insights into the neural circuit dynamics underlying memory-guided choices and highlight a promising technique to potentiate cognitive processes or behavior via brain-machine interfacing.

    1. Neuroscience
    Tianhao Chu, Zilong Ji ... Si Wu
    Research Article

    Hippocampal place cells in freely moving rodents display both theta phase precession and procession, which is thought to play important roles in cognition, but the neural mechanism for producing theta phase shift remains largely unknown. Here, we show that firing rate adaptation within a continuous attractor neural network causes the neural activity bump to oscillate around the external input, resembling theta sweeps of decoded position during locomotion. These forward and backward sweeps naturally account for theta phase precession and procession of individual neurons, respectively. By tuning the adaptation strength, our model explains the difference between ‘bimodal cells’ showing interleaved phase precession and procession, and ‘unimodal cells’ in which phase precession predominates. Our model also explains the constant cycling of theta sweeps along different arms in a T-maze environment, the speed modulation of place cells’ firing frequency, and the continued phase shift after transient silencing of the hippocampus. We hope that this study will aid an understanding of the neural mechanism supporting theta phase coding in the brain.