Gjd2b-mediated gap junctions promote glutamatergic synapse formation and dendritic elaboration in Purkinje neurons

Abstract

Gap junctions between neurons serve as electrical synapses, in addition to conducting metabolites and signaling molecules. During development, early-appearing gap junctions are thought to prefigure chemical synapses, which appear much later. We present evidence for this idea at a central, glutamatergic synapse and provide some mechanistic insights. Loss or reduction in the levels of the gap junction protein Gjd2b decreased the frequency of glutamatergic miniature excitatory postsynaptic currents (mEPSCs) in cerebellar Purkinje neurons (PNs) in larval zebrafish. Ultrastructural analysis in the molecular layer showed decreased synapse density. Further, mEPSCs had faster kinetics and larger amplitudes in mutant PNs, consistent with their stunted dendritic arbors. Time-lapse microscopy in wild type and mutant PNs reveals that Gjd2b puncta promote the elongation of branches and that CaMKII may be a critical mediator of this process. These results demonstrate that Gjd2b-mediated gap junctions regulate glutamatergic synapse formation and dendritic elaboration in PNs.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Sahana Sitaraman

    Neurobiology, National Centre for Biological Sciences, Bangalore, India
    Competing interests
    No competing interests declared.
  2. Gnaneshwar Yadav

    Neurobiology, National Centre for Biological Sciences, Bangalore, India
    Competing interests
    No competing interests declared.
  3. Vandana Agarwal

    Neurobiology, National Centre for Biological Sciences, Bangalore, India
    Competing interests
    No competing interests declared.
  4. Shaista Jabeen

    Neurobiology, National Centre for Biological Sciences, Bangalore, India
    Competing interests
    No competing interests declared.
  5. Shivangi Verma

    Neurobiology, National Centre for Biological Sciences, Bangalore, India
    Competing interests
    No competing interests declared.
  6. Meha Jadhav

    Neurobiology, National Centre for Biological Sciences, Bangalore, India
    Competing interests
    No competing interests declared.
  7. Vatsala Thirumalai

    Neurobiology, National Centre for Biological Sciences, Bangalore, India
    For correspondence
    vatsala@ncbs.res.in
    Competing interests
    Vatsala Thirumalai, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2318-5023

Funding

The Wellcome Trust DBT India Alliance (500040/Z/09/Z and IA/S/17/2/503297)

  • Vatsala Thirumalai

Department of Biotechnology, Ministry of Science and Technology, India (BT/PR4983/MED/30/790/2012)

  • Vatsala Thirumalai

Science and Engineering Research Board (EMR/2015/000595)

  • Vatsala Thirumalai

Department of Atomic Energy, Government of India (12-R&DTFR-5.04-0800)

  • Vatsala Thirumalai

Council of Scientific and Industrial Research, India

  • Shaista Jabeen

Science and Engineering Research Board (YSS/2015/000908)

  • Gnaneshwar Yadav

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Institutional Animal Ethics and Biosafety committee approvals were obtained for all procedures adopted in this study ( NCB/IAEC/VT-1/2011 and TFR/NCBS/14-IBSC/VT-1/2011). Larvae and adults were reared using standard procedures (Westerfield, 2000).

Copyright

© 2021, Sitaraman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,049
    views
  • 219
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sahana Sitaraman
  2. Gnaneshwar Yadav
  3. Vandana Agarwal
  4. Shaista Jabeen
  5. Shivangi Verma
  6. Meha Jadhav
  7. Vatsala Thirumalai
(2021)
Gjd2b-mediated gap junctions promote glutamatergic synapse formation and dendritic elaboration in Purkinje neurons
eLife 10:e68124.
https://doi.org/10.7554/eLife.68124

Share this article

https://doi.org/10.7554/eLife.68124

Further reading

    1. Neuroscience
    Charles R Heller, Gregory R Hamersky, Stephen V David
    Research Article

    Categorical sensory representations are critical for many behaviors, including speech perception. In the auditory system, categorical information is thought to arise hierarchically, becoming increasingly prominent in higher-order cortical regions. The neural mechanisms that support this robust and flexible computation remain poorly understood. Here, we studied sound representations in the ferret primary and non-primary auditory cortex while animals engaged in a challenging sound discrimination task. Population-level decoding of simultaneously recorded single neurons revealed that task engagement caused categorical sound representations to emerge in non-primary auditory cortex. In primary auditory cortex, task engagement caused a general enhancement of sound decoding that was not specific to task-relevant categories. These findings are consistent with mixed selectivity models of neural disentanglement, in which early sensory regions build an overcomplete representation of the world and allow neurons in downstream brain regions to flexibly and selectively read out behaviorally relevant, categorical information.

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Amber R Philp, Carolina R Reyes ... Francisco J Rivera
    Short Report

    Revealing unknown cues that regulate oligodendrocyte progenitor cell (OPC) function in remyelination is important to optimise the development of regenerative therapies for multiple sclerosis (MS). Platelets are present in chronic non-remyelinated lesions of MS and an increase in circulating platelets has been described in experimental autoimmune encephalomyelitis (EAE) mice, an animal model for MS. However, the contribution of platelets to remyelination remains unexplored. Here we show platelet aggregation in proximity to OPCs in areas of experimental demyelination. Partial depletion of circulating platelets impaired OPC differentiation and remyelination, without altering blood-brain barrier stability and neuroinflammation. Transient exposure to platelets enhanced OPC differentiation in vitro, whereas sustained exposure suppressed this effect. In a mouse model of thrombocytosis (Calr+/-), there was a sustained increase in platelet aggregation together with a reduction of newly-generated oligodendrocytes following toxin-induced demyelination. These findings reveal a complex bimodal contribution of platelet to remyelination and provide insights into remyelination failure in MS.