Gjd2b-mediated gap junctions promote glutamatergic synapse formation and dendritic elaboration in Purkinje neurons

Abstract

Gap junctions between neurons serve as electrical synapses, in addition to conducting metabolites and signaling molecules. During development, early-appearing gap junctions are thought to prefigure chemical synapses, which appear much later. We present evidence for this idea at a central, glutamatergic synapse and provide some mechanistic insights. Loss or reduction in the levels of the gap junction protein Gjd2b decreased the frequency of glutamatergic miniature excitatory postsynaptic currents (mEPSCs) in cerebellar Purkinje neurons (PNs) in larval zebrafish. Ultrastructural analysis in the molecular layer showed decreased synapse density. Further, mEPSCs had faster kinetics and larger amplitudes in mutant PNs, consistent with their stunted dendritic arbors. Time-lapse microscopy in wild type and mutant PNs reveals that Gjd2b puncta promote the elongation of branches and that CaMKII may be a critical mediator of this process. These results demonstrate that Gjd2b-mediated gap junctions regulate glutamatergic synapse formation and dendritic elaboration in PNs.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Sahana Sitaraman

    Neurobiology, National Centre for Biological Sciences, Bangalore, India
    Competing interests
    No competing interests declared.
  2. Gnaneshwar Yadav

    Neurobiology, National Centre for Biological Sciences, Bangalore, India
    Competing interests
    No competing interests declared.
  3. Vandana Agarwal

    Neurobiology, National Centre for Biological Sciences, Bangalore, India
    Competing interests
    No competing interests declared.
  4. Shaista Jabeen

    Neurobiology, National Centre for Biological Sciences, Bangalore, India
    Competing interests
    No competing interests declared.
  5. Shivangi Verma

    Neurobiology, National Centre for Biological Sciences, Bangalore, India
    Competing interests
    No competing interests declared.
  6. Meha Jadhav

    Neurobiology, National Centre for Biological Sciences, Bangalore, India
    Competing interests
    No competing interests declared.
  7. Vatsala Thirumalai

    Neurobiology, National Centre for Biological Sciences, Bangalore, India
    For correspondence
    vatsala@ncbs.res.in
    Competing interests
    Vatsala Thirumalai, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2318-5023

Funding

The Wellcome Trust DBT India Alliance (500040/Z/09/Z and IA/S/17/2/503297)

  • Vatsala Thirumalai

Department of Biotechnology, Ministry of Science and Technology, India (BT/PR4983/MED/30/790/2012)

  • Vatsala Thirumalai

Science and Engineering Research Board (EMR/2015/000595)

  • Vatsala Thirumalai

Department of Atomic Energy, Government of India (12-R&DTFR-5.04-0800)

  • Vatsala Thirumalai

Council of Scientific and Industrial Research, India

  • Shaista Jabeen

Science and Engineering Research Board (YSS/2015/000908)

  • Gnaneshwar Yadav

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Hollis T Cline, The Scripps Research Institute, United States

Ethics

Animal experimentation: Institutional Animal Ethics and Biosafety committee approvals were obtained for all procedures adopted in this study ( NCB/IAEC/VT-1/2011 and TFR/NCBS/14-IBSC/VT-1/2011). Larvae and adults were reared using standard procedures (Westerfield, 2000).

Version history

  1. Preprint posted: January 31, 2020 (view preprint)
  2. Received: March 7, 2021
  3. Accepted: August 3, 2021
  4. Accepted Manuscript published: August 4, 2021 (version 1)
  5. Version of Record published: August 23, 2021 (version 2)

Copyright

© 2021, Sitaraman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,936
    views
  • 209
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sahana Sitaraman
  2. Gnaneshwar Yadav
  3. Vandana Agarwal
  4. Shaista Jabeen
  5. Shivangi Verma
  6. Meha Jadhav
  7. Vatsala Thirumalai
(2021)
Gjd2b-mediated gap junctions promote glutamatergic synapse formation and dendritic elaboration in Purkinje neurons
eLife 10:e68124.
https://doi.org/10.7554/eLife.68124

Share this article

https://doi.org/10.7554/eLife.68124

Further reading

    1. Neuroscience
    Vezha Boboeva, Alberto Pezzotta ... Athena Akrami
    Research Article

    The central tendency bias, or contraction bias, is a phenomenon where the judgment of the magnitude of items held in working memory appears to be biased toward the average of past observations. It is assumed to be an optimal strategy by the brain and commonly thought of as an expression of the brain’s ability to learn the statistical structure of sensory input. On the other hand, recency biases such as serial dependence are also commonly observed and are thought to reflect the content of working memory. Recent results from an auditory delayed comparison task in rats suggest that both biases may be more related than previously thought: when the posterior parietal cortex (PPC) was silenced, both short-term and contraction biases were reduced. By proposing a model of the circuit that may be involved in generating the behavior, we show that a volatile working memory content susceptible to shifting to the past sensory experience – producing short-term sensory history biases – naturally leads to contraction bias. The errors, occurring at the level of individual trials, are sampled from the full distribution of the stimuli and are not due to a gradual shift of the memory toward the sensory distribution’s mean. Our results are consistent with a broad set of behavioral findings and provide predictions of performance across different stimulus distributions and timings, delay intervals, as well as neuronal dynamics in putative working memory areas. Finally, we validate our model by performing a set of human psychophysics experiments of an auditory parametric working memory task.

    1. Neuroscience
    Michael Berger, Michèle Fraatz ... Henrike Scholz
    Research Article

    The brain regulates food intake in response to internal energy demands and food availability. However, can internal energy storage influence the type of memory that is formed? We show that the duration of starvation determines whether Drosophila melanogaster forms appetitive short-term or longer-lasting intermediate memories. The internal glycogen storage in the muscles and adipose tissue influences how intensely sucrose-associated information is stored. Insulin-like signaling in octopaminergic reward neurons integrates internal energy storage into memory formation. Octopamine, in turn, suppresses the formation of long-term memory. Octopamine is not required for short-term memory because octopamine-deficient mutants can form appetitive short-term memory for sucrose and to other nutrients depending on the internal energy status. The reduced positive reinforcing effect of sucrose at high internal glycogen levels, combined with the increased stability of food-related memories due to prolonged periods of starvation, could lead to increased food intake.