Gjd2b-mediated gap junctions promote glutamatergic synapse formation and dendritic elaboration in Purkinje neurons

Abstract

Gap junctions between neurons serve as electrical synapses, in addition to conducting metabolites and signaling molecules. During development, early-appearing gap junctions are thought to prefigure chemical synapses, which appear much later. We present evidence for this idea at a central, glutamatergic synapse and provide some mechanistic insights. Loss or reduction in the levels of the gap junction protein Gjd2b decreased the frequency of glutamatergic miniature excitatory postsynaptic currents (mEPSCs) in cerebellar Purkinje neurons (PNs) in larval zebrafish. Ultrastructural analysis in the molecular layer showed decreased synapse density. Further, mEPSCs had faster kinetics and larger amplitudes in mutant PNs, consistent with their stunted dendritic arbors. Time-lapse microscopy in wild type and mutant PNs reveals that Gjd2b puncta promote the elongation of branches and that CaMKII may be a critical mediator of this process. These results demonstrate that Gjd2b-mediated gap junctions regulate glutamatergic synapse formation and dendritic elaboration in PNs.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Sahana Sitaraman

    Neurobiology, National Centre for Biological Sciences, Bangalore, India
    Competing interests
    No competing interests declared.
  2. Gnaneshwar Yadav

    Neurobiology, National Centre for Biological Sciences, Bangalore, India
    Competing interests
    No competing interests declared.
  3. Vandana Agarwal

    Neurobiology, National Centre for Biological Sciences, Bangalore, India
    Competing interests
    No competing interests declared.
  4. Shaista Jabeen

    Neurobiology, National Centre for Biological Sciences, Bangalore, India
    Competing interests
    No competing interests declared.
  5. Shivangi Verma

    Neurobiology, National Centre for Biological Sciences, Bangalore, India
    Competing interests
    No competing interests declared.
  6. Meha Jadhav

    Neurobiology, National Centre for Biological Sciences, Bangalore, India
    Competing interests
    No competing interests declared.
  7. Vatsala Thirumalai

    Neurobiology, National Centre for Biological Sciences, Bangalore, India
    For correspondence
    vatsala@ncbs.res.in
    Competing interests
    Vatsala Thirumalai, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2318-5023

Funding

The Wellcome Trust DBT India Alliance (500040/Z/09/Z and IA/S/17/2/503297)

  • Vatsala Thirumalai

Department of Biotechnology, Ministry of Science and Technology, India (BT/PR4983/MED/30/790/2012)

  • Vatsala Thirumalai

Science and Engineering Research Board (EMR/2015/000595)

  • Vatsala Thirumalai

Department of Atomic Energy, Government of India (12-R&DTFR-5.04-0800)

  • Vatsala Thirumalai

Council of Scientific and Industrial Research, India

  • Shaista Jabeen

Science and Engineering Research Board (YSS/2015/000908)

  • Gnaneshwar Yadav

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Institutional Animal Ethics and Biosafety committee approvals were obtained for all procedures adopted in this study ( NCB/IAEC/VT-1/2011 and TFR/NCBS/14-IBSC/VT-1/2011). Larvae and adults were reared using standard procedures (Westerfield, 2000).

Copyright

© 2021, Sitaraman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,226
    views
  • 230
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sahana Sitaraman
  2. Gnaneshwar Yadav
  3. Vandana Agarwal
  4. Shaista Jabeen
  5. Shivangi Verma
  6. Meha Jadhav
  7. Vatsala Thirumalai
(2021)
Gjd2b-mediated gap junctions promote glutamatergic synapse formation and dendritic elaboration in Purkinje neurons
eLife 10:e68124.
https://doi.org/10.7554/eLife.68124

Share this article

https://doi.org/10.7554/eLife.68124

Further reading

    1. Immunology and Inflammation
    2. Neuroscience
    Jeremy M Shea, Saul A Villeda
    Research Article

    During aging, microglia – the resident macrophages of the brain – exhibit altered phenotypes and contribute to age-related neuroinflammation. While numerous hallmarks of age-related microglia have been elucidated, the progression from homeostasis to dysfunction during the aging process remains unresolved. To bridge this gap in knowledge, we undertook complementary cellular and molecular analyses of microglia in the mouse hippocampus across the adult lifespan and in the experimental aging model of heterochronic parabiosis. Single-cell RNA-Seq and pseudotime analysis revealed age-related transcriptional heterogeneity in hippocampal microglia and identified intermediate states of microglial aging that also emerge following heterochronic parabiosis. We tested the functionality of intermediate stress response states via TGFβ1 and translational states using pharmacological approaches in vitro to reveal their modulation of the progression to an activated state. Furthermore, we utilized single-cell RNA-Seq in conjunction with in vivo adult microglia-specific Tgfb1 conditional genetic knockout mouse models to demonstrate that microglia advancement through intermediate aging states drives transcriptional inflammatory activation and hippocampal-dependent cognitive decline.

    1. Neuroscience
    William Hockeimer, Ruo-Yah Lai ... James J Knierim
    Research Article

    The hippocampus is believed to encode episodic memory by binding information about the content of experience within a spatiotemporal framework encoding the location and temporal context of that experience. Previous work implies a distinction between positional inputs to the hippocampus from upstream brain regions that provide information about an animal’s location and nonpositional inputs which provide information about the content of experience, both sensory and navigational. Here, we leverage the phenomenon of ‘place field repetition’ to better understand the functional dissociation between positional and nonpositional information encoded in CA1. Rats navigated freely on a novel maze consisting of linear segments arranged in a rectilinear, city-block configuration, which combined elements of open-field foraging and linear-track tasks. Unlike typical results in open-field foraging, place fields were directionally tuned on the maze, even though the animal’s behavior was not constrained to extended, one-dimensional (1D) trajectories. Repeating fields from the same cell tended to have the same directional preference when the fields were aligned along a linear corridor of the maze, but they showed uncorrelated directional preferences when they were unaligned across different corridors. Lastly, individual fields displayed complex time dynamics which resulted in the population activity changing gradually over the course of minutes. These temporal dynamics were evident across repeating fields of the same cell. These results demonstrate that the positional inputs that drive a cell to fire in similar locations across the maze can be behaviorally and temporally dissociated from the nonpositional inputs that alter the firing rates of the cell within its place fields, offering a potential mechanism to increase the flexibility of the system to encode episodic variables within a spatiotemporal framework provided by place cells.