Cellular, circuit and transcriptional framework for modulation of itch in the central amygdala

Abstract

Itch is an unpleasant sensation that elicits robust scratching and aversive experience. However, the identity of the cells and neural circuits that organize this information remains elusive. Here we show the necessity and sufficiency of chloroquine-activated neurons in the central amygdala (CeA) for both itch sensation and associated aversion. Further, we show that chloroquine-activated CeA neurons play important roles in itch-related comorbidities, including anxiety-like behaviors, but not in some aversive and appetitive behaviors previously ascribed to CeA neurons. RNA-sequencing of chloroquine-activated CeA neurons identified several differentially expressed genes as well as potential key signaling pathways in regulating pruritis. Finally, viral tracing experiments demonstrate that these neurons send projections to the ventral periaqueductal gray that are critical in modulation of itch. These findings reveal a cellular and circuit signature of CeA neurons orchestrating behavioral and affective responses to pruritus in mice.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE130268

The following data sets were generated

Article and author information

Author details

  1. Vijay K Samineni

    Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9491-2793
  2. Jose G Grajales-Reyes

    Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Gary E Grajales-Reyes

    Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Eric Dameon Tycksen

    Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6362-0141
  5. Bryan A Copits

    Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Christian Pedersen

    Bioengineering, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Edem S Ankudey

    Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Julian N Sackey

    Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Sienna B Sewell

    Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Michael R Bruchas

    Anesthesiology and Pain Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4713-7816
  11. Robert W Gereau IV

    Washington University in St Louis, St Louis, United States
    For correspondence
    gereaur@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5428-4251

Funding

National Institute of Neurological Disorders and Stroke (R01NS106953)

  • Robert W Gereau IV

National Institute of Diabetes and Digestive and Kidney Diseases (R01DK116178)

  • Robert W Gereau IV

National Institute of Diabetes and Digestive and Kidney Diseases (K01 DK115634)

  • Vijay K Samineni

National Institute of Neurological Disorders and Stroke (5F31NS103472-02)

  • Jose G Grajales-Reyes

National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK128475)

  • Vijay K Samineni

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) of Washington University School of Medicine (approved protocol 20-0078).

Copyright

© 2021, Samineni et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,795
    views
  • 424
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vijay K Samineni
  2. Jose G Grajales-Reyes
  3. Gary E Grajales-Reyes
  4. Eric Dameon Tycksen
  5. Bryan A Copits
  6. Christian Pedersen
  7. Edem S Ankudey
  8. Julian N Sackey
  9. Sienna B Sewell
  10. Michael R Bruchas
  11. Robert W Gereau IV
(2021)
Cellular, circuit and transcriptional framework for modulation of itch in the central amygdala
eLife 10:e68130.
https://doi.org/10.7554/eLife.68130

Share this article

https://doi.org/10.7554/eLife.68130

Further reading

    1. Medicine
    2. Neuroscience
    Ayni Sharif, Matthew S Jeffers ... Manoj M Lalu
    Research Article

    C-C chemokine receptor type 5 (CCR5) antagonists may improve both acute stroke outcome and long-term recovery. Despite their evaluation in ongoing clinical trials, gaps remain in the evidence supporting their use. With a panel of patients with lived experiences of stroke, we performed a systematic review of animal models of stroke that administered a CCR5 antagonist and assessed infarct size or behavioural outcomes. MEDLINE, Web of Science, and Embase were searched. Article screening and data extraction were completed in duplicate. We pooled outcomes using random effects meta-analyses. We assessed risk of bias using the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) tool and alignment with the Stroke Treatment Academic Industry Roundtable (STAIR) and Stroke Recovery and Rehabilitation Roundtable (SRRR) recommendations. Five studies representing 10 experiments were included. CCR5 antagonists reduced infarct volume (standard mean difference −1.02; 95% confidence interval −1.58 to −0.46) when compared to stroke-only controls. Varied timing of CCR5 administration (pre- or post-stroke induction) produced similar benefit. CCR5 antagonists significantly improved 11 of 16 behavioural outcomes reported. High risk of bias was present in all studies and critical knowledge gaps in the preclinical evidence were identified using STAIR/SRRR. CCR5 antagonists demonstrate promise; however, rigorously designed preclinical studies that better align with STAIR/SRRR recommendations and downstream clinical trials are warranted. Prospective Register of Systematic Reviews (PROSPERO CRD42023393438).

    1. Neuroscience
    Damian Koevoet, Laura Van Zantwijk ... Christoph Strauch
    Research Article

    What determines where to move the eyes? We recently showed that pupil size, a well-established marker of effort, also reflects the effort associated with making a saccade (‘saccade costs’). Here, we demonstrate saccade costs to critically drive saccade selection: when choosing between any two saccade directions, the least costly direction was consistently preferred. Strikingly, this principle even held during search in natural scenes in two additional experiments. When increasing cognitive demand experimentally through an auditory counting task, participants made fewer saccades and especially cut costly directions. This suggests that the eye-movement system and other cognitive operations consume similar resources that are flexibly allocated among each other as cognitive demand changes. Together, we argue that eye-movement behavior is tuned to adaptively minimize saccade-inherent effort.