Cellular, circuit and transcriptional framework for modulation of itch in the central amygdala

Abstract

Itch is an unpleasant sensation that elicits robust scratching and aversive experience. However, the identity of the cells and neural circuits that organize this information remains elusive. Here we show the necessity and sufficiency of chloroquine-activated neurons in the central amygdala (CeA) for both itch sensation and associated aversion. Further, we show that chloroquine-activated CeA neurons play important roles in itch-related comorbidities, including anxiety-like behaviors, but not in some aversive and appetitive behaviors previously ascribed to CeA neurons. RNA-sequencing of chloroquine-activated CeA neurons identified several differentially expressed genes as well as potential key signaling pathways in regulating pruritis. Finally, viral tracing experiments demonstrate that these neurons send projections to the ventral periaqueductal gray that are critical in modulation of itch. These findings reveal a cellular and circuit signature of CeA neurons orchestrating behavioral and affective responses to pruritus in mice.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE130268

The following data sets were generated

Article and author information

Author details

  1. Vijay K Samineni

    Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9491-2793
  2. Jose G Grajales-Reyes

    Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Gary E Grajales-Reyes

    Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Eric Dameon Tycksen

    Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6362-0141
  5. Bryan A Copits

    Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Christian Pedersen

    Bioengineering, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Edem S Ankudey

    Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Julian N Sackey

    Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Sienna B Sewell

    Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Michael R Bruchas

    Anesthesiology and Pain Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4713-7816
  11. Robert W Gereau IV

    Washington University in St Louis, St Louis, United States
    For correspondence
    gereaur@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5428-4251

Funding

National Institute of Neurological Disorders and Stroke (R01NS106953)

  • Robert W Gereau IV

National Institute of Diabetes and Digestive and Kidney Diseases (R01DK116178)

  • Robert W Gereau IV

National Institute of Diabetes and Digestive and Kidney Diseases (K01 DK115634)

  • Vijay K Samineni

National Institute of Neurological Disorders and Stroke (5F31NS103472-02)

  • Jose G Grajales-Reyes

National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK128475)

  • Vijay K Samineni

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) of Washington University School of Medicine (approved protocol 20-0078).

Reviewing Editor

  1. Mario Penzo, National Institute of Mental Health, United States

Version history

  1. Received: March 5, 2021
  2. Accepted: May 24, 2021
  3. Accepted Manuscript published: May 25, 2021 (version 1)
  4. Version of Record published: June 2, 2021 (version 2)

Copyright

© 2021, Samineni et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,382
    Page views
  • 364
    Downloads
  • 18
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vijay K Samineni
  2. Jose G Grajales-Reyes
  3. Gary E Grajales-Reyes
  4. Eric Dameon Tycksen
  5. Bryan A Copits
  6. Christian Pedersen
  7. Edem S Ankudey
  8. Julian N Sackey
  9. Sienna B Sewell
  10. Michael R Bruchas
  11. Robert W Gereau IV
(2021)
Cellular, circuit and transcriptional framework for modulation of itch in the central amygdala
eLife 10:e68130.
https://doi.org/10.7554/eLife.68130

Share this article

https://doi.org/10.7554/eLife.68130

Further reading

    1. Neuroscience
    Olgerta Asko, Alejandro Omar Blenkmann ... Anne-Kristin Solbakk
    Research Article Updated

    Orbitofrontal cortex (OFC) is classically linked to inhibitory control, emotion regulation, and reward processing. Recent perspectives propose that the OFC also generates predictions about perceptual events, actions, and their outcomes. We tested the role of the OFC in detecting violations of prediction at two levels of abstraction (i.e., hierarchical predictive processing) by studying the event-related potentials (ERPs) of patients with focal OFC lesions (n = 12) and healthy controls (n = 14) while they detected deviant sequences of tones in a local–global paradigm. The structural regularities of the tones were controlled at two hierarchical levels by rules defined at a local (i.e., between tones within sequences) and at a global (i.e., between sequences) level. In OFC patients, ERPs elicited by standard tones were unaffected at both local and global levels compared to controls. However, patients showed an attenuated mismatch negativity (MMN) and P3a to local prediction violation, as well as a diminished MMN followed by a delayed P3a to the combined local and global level prediction violation. The subsequent P3b component to conditions involving violations of prediction at the level of global rules was preserved in the OFC group. Comparable effects were absent in patients with lesions restricted to the lateral PFC, which lends a degree of anatomical specificity to the altered predictive processing resulting from OFC lesion. Overall, the altered magnitudes and time courses of MMN/P3a responses after lesions to the OFC indicate that the neural correlates of detection of auditory regularity violation are impacted at two hierarchical levels of rule abstraction.

    1. Neuroscience
    Nada Kojovic, Sezen Cekic ... Marie Schaer
    Research Article Updated

    Atypical deployment of social gaze is present early on in toddlers with autism spectrum disorders (ASDs). Yet, studies characterizing the developmental dynamic behind it are scarce. Here, we used a data-driven method to delineate the developmental change in visual exploration of social interaction over childhood years in autism. Longitudinal eye-tracking data were acquired as children with ASD and their typically developing (TD) peers freely explored a short cartoon movie. We found divergent moment-to-moment gaze patterns in children with ASD compared to their TD peers. This divergence was particularly evident in sequences that displayed social interactions between characters and even more so in children with lower developmental and functional levels. The basic visual properties of the animated scene did not account for the enhanced divergence. Over childhood years, these differences dramatically increased to become more idiosyncratic. These findings suggest that social attention should be targeted early in clinical treatments.