Functional insights from a surface antigen mRNA-bound proteome

  1. Larissa Melo do Nascimento
  2. Franziska Egler
  3. Katharina Arnold
  4. Nina Papavasiliou
  5. Christine Clayton
  6. Esteban Erben  Is a corresponding author
  1. ZMBH, Germany
  2. Deutsche Krebsforschungszentrum (DKFZ), Germany
  3. DKFZ-ZMBH Alliance, Germany
  4. IIBIO - UNSAM, Argentina

Abstract

Trypanosoma brucei is the causative agent of human sleeping sickness. The parasites' Variant Surface Glycoprotein (VSG) enables them to evade adaptive immunity via antigenic variation. VSG comprises 10% of total cell protein and the high stability of VSG mRNA is essential for trypanosome survival. To determine how VSG mRNA stability is maintained, we used mRNA affinity purification to identify all its associated proteins. CFB2, an unconventional RNA-binding protein with an F-box domain, was specifically enriched with VSG mRNA. We demonstrate that CFB2 is essential for VSG mRNA stability, describe cis acting elements within the VSG 3'-untranslated region that regulate the interaction, identify trans-acting factors that are present in the VSG messenger ribonucleoprotein particle and mechanistically explain how CFB2 stabilizes the mRNA of this key pathogenicity factor. Beyond T. brucei, the mRNP purification approach has the potential to supply detailed biological insight into metabolism of relatively abundant mRNAs in any eukaryote.

Data availability

The RNASeq raw data is available at Array Express with the accession number E-MTAB-9700. The proteomics data are available via ProteomeXchange with identifier PXD021772.

The following data sets were generated

Article and author information

Author details

  1. Larissa Melo do Nascimento

    CC lab, ZMBH, Heidelberg, Germany
    Competing interests
    No competing interests declared.
  2. Franziska Egler

    CC lab, ZMBH, Heidelberg, Germany
    Competing interests
    No competing interests declared.
  3. Katharina Arnold

    CC lab, ZMBH, Heidelberg, Germany
    Competing interests
    No competing interests declared.
  4. Nina Papavasiliou

    Deutsche Krebsforschungszentrum (DKFZ), Heidelberg, Germany
    Competing interests
    No competing interests declared.
  5. Christine Clayton

    Zentrum fuer Molekulare Biologie der Universitaet Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
    Competing interests
    Christine Clayton, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6384-0731
  6. Esteban Erben

    Molecular Parasitology, IIBIO - UNSAM, San Martín, Argentina
    For correspondence
    eerben@iib.unsam.edu.ar
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5179-7863

Funding

H2020 European Research Council (649019)

  • Nina Papavasiliou

Core Funding University of Heidelberg (ND)

  • Christine Clayton

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Dominique Soldati-Favre, University of Geneva, Switzerland

Version history

  1. Received: March 7, 2021
  2. Accepted: March 18, 2021
  3. Accepted Manuscript published: March 30, 2021 (version 1)
  4. Version of Record published: April 16, 2021 (version 2)

Copyright

© 2021, Melo do Nascimento et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,067
    Page views
  • 260
    Downloads
  • 18
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Larissa Melo do Nascimento
  2. Franziska Egler
  3. Katharina Arnold
  4. Nina Papavasiliou
  5. Christine Clayton
  6. Esteban Erben
(2021)
Functional insights from a surface antigen mRNA-bound proteome
eLife 10:e68136.
https://doi.org/10.7554/eLife.68136

Share this article

https://doi.org/10.7554/eLife.68136

Further reading

    1. Microbiology and Infectious Disease
    Chiara Andolina, Wouter Graumans ... Teun Bousema
    Research Article

    It is currently unknown whether all Plasmodium falciparum-infected mosquitoes are equally infectious. We assessed sporogonic development using cultured gametocytes in the Netherlands and naturally circulating strains in Burkina Faso. We quantified the number of sporozoites expelled into artificial skin in relation to intact oocysts, ruptured oocysts, and residual salivary gland sporozoites. In laboratory conditions, higher total sporozoite burden was associated with shorter duration of sporogony (p<0.001). Overall, 53% (116/216) of infected Anopheles stephensi mosquitoes expelled sporozoites into artificial skin with a median of 136 expelled sporozoites (interquartile range [IQR], 34–501). There was a strong positive correlation between ruptured oocyst number and salivary gland sporozoite load (ρ = 0.8; p<0.0001) and a weaker positive correlation between salivary gland sporozoite load and number of sporozoites expelled (ρ = 0.35; p=0.0002). In Burkina Faso, Anopheles coluzzii mosquitoes were infected by natural gametocyte carriers. Among salivary gland sporozoite positive mosquitoes, 89% (33/37) expelled sporozoites with a median of 1035 expelled sporozoites (IQR, 171–2969). Again, we observed a strong correlation between ruptured oocyst number and salivary gland sporozoite load (ρ = 0.9; p<0.0001) and a positive correlation between salivary gland sporozoite load and the number of sporozoites expelled (ρ = 0.7; p<0.0001). Several mosquitoes expelled multiple parasite clones during probing. Whilst sporozoite expelling was regularly observed from mosquitoes with low infection burdens, our findings indicate that mosquito infection burden is positively associated with the number of expelled sporozoites. Future work is required to determine the direct implications of these findings for transmission potential.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Veronica Teresa Ober, George Boniface Githure ... Michael Boshart
    Research Article

    Cyclic nucleotide binding domains (CNB) confer allosteric regulation by cAMP or cGMP to many signaling proteins, including PKA and PKG. PKA of phylogenetically distant Trypanosoma is the first exception as it is cyclic nucleotide-independent and responsive to nucleoside analogues (Bachmaier et al., 2019). Here, we show that natural nucleosides inosine, guanosine and adenosine are nanomolar affinity CNB ligands and activators of PKA orthologs of the important tropical pathogens Trypanosoma brucei, Trypanosoma cruzi, and Leishmania. The sequence and structural determinants of binding affinity, -specificity and kinase activation of PKAR were established by structure-activity relationship (SAR) analysis, co-crystal structures and mutagenesis. Substitution of two to three amino acids in the binding sites is sufficient for conversion of CNB domains from nucleoside to cyclic nucleotide specificity. In addition, a trypanosomatid-specific C-terminal helix (αD) is required for high affinity binding to CNB-B. The αD helix functions as a lid of the binding site that shields ligands from solvent. Selectivity of guanosine for CNB-B and of adenosine for CNB-A results in synergistic kinase activation at low nanomolar concentration. PKA pulldown from rapid lysis establishes guanosine as the predominant ligand in vivo in T. brucei bloodstream forms, whereas guanosine and adenosine seem to synergize in the procyclic developmental stage in the insect vector. We discuss the versatile use of CNB domains in evolution and recruitment of PKA for novel nucleoside-mediated signaling.