Spatially displaced excitation contributes to the encoding of interrupted motion by a retinal direction-selective circuit

  1. Jennifer Ding
  2. Albert Chen
  3. Janet Chung
  4. Hector Acaron Ledesma
  5. Mofei Wu
  6. David M Berson
  7. Stephanie E Palmer  Is a corresponding author
  8. Wei Wei  Is a corresponding author
  1. The University of Chicago, United States
  2. Harvard University, United States
  3. Brown University, United States

Abstract

Spatially distributed excitation and inhibition collectively shape a visual neuron's receptive field (RF) properties. In the direction-selective circuit of the mammalian retina, the role of strong null-direction inhibition of On-Off direction-selective ganglion cells (On-Off DSGCs) on their direction selectivity is well-studied. However, how excitatory inputs influence the On-Off DSGC's visual response is underexplored. Here, we report that On-Off DSGCs have a spatially displaced glutamatergic receptive field along their horizontal preferred-null motion axes. This displaced receptive field contributes to DSGC null-direction spiking during interrupted motion trajectories. Theoretical analyses indicate that population responses during interrupted motion may help populations of On-Off DSGCs signal the spatial location of moving objects in complex, naturalistic visual environments. Our study highlights that the direction-selective circuit exploits separate sets of mechanisms under different stimulus conditions, and these mechanisms may help encode multiple visual features.

Data availability

Data available on Dryad Digital Repository (doi:10.5061/dryad.vq83bk3s8). Source data files have been provided for all main text and supplemental figures.

The following data sets were generated

Article and author information

Author details

  1. Jennifer Ding

    Committee on Neurobiology, The University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2282-6615
  2. Albert Chen

    Biophysics Graduate Program, Harvard University, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9306-8703
  3. Janet Chung

    Department of Neurobiology, The University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  4. Hector Acaron Ledesma

    Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  5. Mofei Wu

    Department of Neurobiology, The University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  6. David M Berson

    Department of Neuroscience, Brown University, Providence, United States
    Competing interests
    No competing interests declared.
  7. Stephanie E Palmer

    Organismal Biology and Anatomy, The University of Chicago, Chicago, United States
    For correspondence
    sepalmer@uchicago.edu
    Competing interests
    Stephanie E Palmer, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6211-6293
  8. Wei Wei

    Department of Neurobiology, The University of Chicago, Chicago, United States
    For correspondence
    weiw@uchicago.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7771-5974

Funding

NIH (R01 NS109990)

  • Wei Wei

McKnight Endowment Fund for Neuroscience (McKnight Scholarship Award)

  • Wei Wei

NSF (GRFP DGE-1746045)

  • Jennifer Ding

NIH (F31 EY029156)

  • Hector Acaron Ledesma

NSF (Career Award 1652617)

  • Stephanie E Palmer

Physics of Biological Function (PHY-1734030)

  • Stephanie E Palmer

NIH (RO1 EY012793)

  • David M Berson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Fred Rieke, University of Washington, United States

Ethics

Animal experimentation: All procedures regarding the use of mice were in accordance with the University of Chicago Institutional Animal Care and Use Committee (IACUC) (ACUP protocol 72247) and with the NIH Guide for the Care and Use of Laboratory Animals and the Public Health Service Policy.

Version history

  1. Received: March 8, 2021
  2. Accepted: June 6, 2021
  3. Accepted Manuscript published: June 7, 2021 (version 1)
  4. Version of Record published: June 17, 2021 (version 2)

Copyright

© 2021, Ding et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,039
    views
  • 179
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jennifer Ding
  2. Albert Chen
  3. Janet Chung
  4. Hector Acaron Ledesma
  5. Mofei Wu
  6. David M Berson
  7. Stephanie E Palmer
  8. Wei Wei
(2021)
Spatially displaced excitation contributes to the encoding of interrupted motion by a retinal direction-selective circuit
eLife 10:e68181.
https://doi.org/10.7554/eLife.68181

Share this article

https://doi.org/10.7554/eLife.68181

Further reading

    1. Neuroscience
    Sanggeon Park, Yeowool Huh ... Jeiwon Cho
    Research Article

    The brain’s ability to appraise threats and execute appropriate defensive responses is essential for survival in a dynamic environment. Humans studies have implicated the anterior insular cortex (aIC) in subjective fear regulation and its abnormal activity in fear/anxiety disorders. However, the complex aIC connectivity patterns involved in regulating fear remain under investigated. To address this, we recorded single units in the aIC of freely moving male mice that had previously undergone auditory fear conditioning, assessed the effect of optogenetically activating specific aIC output structures in fear, and examined the organization of aIC neurons projecting to the specific structures with retrograde tracing. Single-unit recordings revealed that a balanced number of aIC pyramidal neurons’ activity either positively or negatively correlated with a conditioned tone-induced freezing (fear) response. Optogenetic manipulations of aIC pyramidal neuronal activity during conditioned tone presentation altered the expression of conditioned freezing. Neural tracing showed that non-overlapping populations of aIC neurons project to the amygdala or the medial thalamus, and the pathway bidirectionally modulated conditioned fear. Specifically, optogenetic stimulation of the aIC-amygdala pathway increased conditioned freezing, while optogenetic stimulation of the aIC-medial thalamus pathway decreased it. Our findings suggest that the balance of freezing-excited and freezing-inhibited neuronal activity in the aIC and the distinct efferent circuits interact collectively to modulate fear behavior.

    1. Neuroscience
    Jonathan S Tsay, Hyosub E Kim ... Richard B Ivry
    Review Article

    Motor learning is often viewed as a unitary process that operates outside of conscious awareness. This perspective has led to the development of sophisticated models designed to elucidate the mechanisms of implicit sensorimotor learning. In this review, we argue for a broader perspective, emphasizing the contribution of explicit strategies to sensorimotor learning tasks. Furthermore, we propose a theoretical framework for motor learning that consists of three fundamental processes: reasoning, the process of understanding action–outcome relationships; refinement, the process of optimizing sensorimotor and cognitive parameters to achieve motor goals; and retrieval, the process of inferring the context and recalling a control policy. We anticipate that this ‘3R’ framework for understanding how complex movements are learned will open exciting avenues for future research at the intersection between cognition and action.