Spatially displaced excitation contributes to the encoding of interrupted motion by a retinal direction-selective circuit

  1. Jennifer Ding
  2. Albert Chen
  3. Janet Chung
  4. Hector Acaron Ledesma
  5. Mofei Wu
  6. David M Berson
  7. Stephanie E Palmer  Is a corresponding author
  8. Wei Wei  Is a corresponding author
  1. The University of Chicago, United States
  2. Harvard University, United States
  3. Brown University, United States

Abstract

Spatially distributed excitation and inhibition collectively shape a visual neuron's receptive field (RF) properties. In the direction-selective circuit of the mammalian retina, the role of strong null-direction inhibition of On-Off direction-selective ganglion cells (On-Off DSGCs) on their direction selectivity is well-studied. However, how excitatory inputs influence the On-Off DSGC's visual response is underexplored. Here, we report that On-Off DSGCs have a spatially displaced glutamatergic receptive field along their horizontal preferred-null motion axes. This displaced receptive field contributes to DSGC null-direction spiking during interrupted motion trajectories. Theoretical analyses indicate that population responses during interrupted motion may help populations of On-Off DSGCs signal the spatial location of moving objects in complex, naturalistic visual environments. Our study highlights that the direction-selective circuit exploits separate sets of mechanisms under different stimulus conditions, and these mechanisms may help encode multiple visual features.

Data availability

Data available on Dryad Digital Repository (doi:10.5061/dryad.vq83bk3s8). Source data files have been provided for all main text and supplemental figures.

The following data sets were generated

Article and author information

Author details

  1. Jennifer Ding

    Committee on Neurobiology, The University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2282-6615
  2. Albert Chen

    Biophysics Graduate Program, Harvard University, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9306-8703
  3. Janet Chung

    Department of Neurobiology, The University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  4. Hector Acaron Ledesma

    Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  5. Mofei Wu

    Department of Neurobiology, The University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  6. David M Berson

    Department of Neuroscience, Brown University, Providence, United States
    Competing interests
    No competing interests declared.
  7. Stephanie E Palmer

    Organismal Biology and Anatomy, The University of Chicago, Chicago, United States
    For correspondence
    sepalmer@uchicago.edu
    Competing interests
    Stephanie E Palmer, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6211-6293
  8. Wei Wei

    Department of Neurobiology, The University of Chicago, Chicago, United States
    For correspondence
    weiw@uchicago.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7771-5974

Funding

NIH (R01 NS109990)

  • Wei Wei

McKnight Endowment Fund for Neuroscience (McKnight Scholarship Award)

  • Wei Wei

NSF (GRFP DGE-1746045)

  • Jennifer Ding

NIH (F31 EY029156)

  • Hector Acaron Ledesma

NSF (Career Award 1652617)

  • Stephanie E Palmer

Physics of Biological Function (PHY-1734030)

  • Stephanie E Palmer

NIH (RO1 EY012793)

  • David M Berson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures regarding the use of mice were in accordance with the University of Chicago Institutional Animal Care and Use Committee (IACUC) (ACUP protocol 72247) and with the NIH Guide for the Care and Use of Laboratory Animals and the Public Health Service Policy.

Copyright

© 2021, Ding et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,078
    views
  • 183
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jennifer Ding
  2. Albert Chen
  3. Janet Chung
  4. Hector Acaron Ledesma
  5. Mofei Wu
  6. David M Berson
  7. Stephanie E Palmer
  8. Wei Wei
(2021)
Spatially displaced excitation contributes to the encoding of interrupted motion by a retinal direction-selective circuit
eLife 10:e68181.
https://doi.org/10.7554/eLife.68181

Share this article

https://doi.org/10.7554/eLife.68181

Further reading

    1. Neuroscience
    Juan Carlos Boffi, Brice Bathellier ... Robert Prevedel
    Research Article

    Sound location coding has been extensively studied at the central nucleus of the mammalian inferior colliculus (CNIC), supporting a population code. However, this population code has not been extensively characterized on the single-trial level with simultaneous recordings or at other anatomical regions like the dorsal cortex of inferior colliculus (DCIC), which is relevant for learning-induced experience dependent plasticity. To address these knowledge gaps, here we made in two complementary ways large-scale recordings of DCIC populations from awake mice in response to sounds delivered from 13 different frontal horizontal locations (azimuths): volumetric two-photon calcium imaging with ~700 cells simultaneously recorded at a relatively low temporal resolution, and high-density single-unit extracellular recordings with ~20 cells simultaneously recorded at a high temporal resolution. Independent of the method, the recorded DCIC population responses revealed substantial trial-to-trial variation (neuronal noise) which was significantly correlated across pairs of neurons (noise correlations) in the passively listening condition. Nevertheless, decoding analysis supported that these noisy response patterns encode sound location on the single-trial basis, reaching errors that match the discrimination ability of mice. The detected noise correlations contributed to minimize the error of the DCIC population code of sound azimuth. Altogether these findings point out that DCIC can encode sound location in a similar format to what has been proposed for CNIC, opening exciting questions about how noise correlations could shape this code in the context of cortico-collicular input and experience-dependent plasticity.

    1. Neuroscience
    Selene Seoyun Lee, Livia Civitelli, Laura Parkkinen
    Research Article

    The alpha-synuclein (αSyn) seeding amplification assay (SAA) that allows the generation of disease-specific in vitro seeded fibrils (SAA fibrils) is used as a research tool to study the connection between the structure of αSyn fibrils, cellular seeding/spreading, and the clinicopathological manifestations of different synucleinopathies. However, structural differences between human brain-derived and SAA αSyn fibrils have been recently highlighted. Here, we characterize the biophysical properties of the human brain-derived αSyn fibrils from the brains of patients with Parkinson’s disease with and without dementia (PD, PDD), dementia with Lewy bodies (DLB), multiple system atrophy (MSA), and compare them to the ‘model’ SAA fibrils. We report that the brain-derived αSyn fibrils show distinct biochemical profiles, which were not replicated in the corresponding SAA fibrils. Furthermore, the brain-derived αSyn fibrils from all synucleinopathies displayed a mixture of ‘straight’ and ‘twisted’ microscopic structures. However, the PD, PDD, and DLB SAA fibrils had a ’straight’ structure, whereas MSA SAA fibrils showed a ‘twisted’ structure. Finally, the brain-derived αSyn fibrils from all four synucleinopathies were phosphorylated (S129). Interestingly, phosphorylated αSyn were carried over to the PDD and DLB SAA fibrils. Our findings demonstrate the limitation of the SAA fibrils modeling the brain-derived αSyn fibrils and pay attention to the necessity of deepening the understanding of the SAA fibrillation methodology.