Defining function of wild-type and three patient specific TP53 mutations in a zebrafish model of embryonal rhabdomyosarcoma

Abstract

In embryonal rhabdomyosarcoma (ERMS) and generally in sarcomas, the role of wild-type and loss or gain-of-function TP53 mutations remains largely undefined. Eliminating mutant or restoring wild-type p53 is challenging; nevertheless, understanding p53 variant effects on tumorigenesis remains central to realizing better treatment outcomes. In ERMS, >70% of patients retain wild-type TP53, yet mutations when present are associated with worse prognosis. Employing a kRASG12D-driven ERMS tumor model and tp53 null (tp53-/-) zebrafish, we define wild-type and patient-specific TP53 mutant effects on tumorigenesis. We demonstrate that tp53 is a major suppressor of tumorigenesis, where tp53 loss expands tumor initiation from <35% to >97% of animals. Characterizing three patient-specific alleles reveals that TP53C176F partially retains wild-type p53 apoptotic activity that can be exploited, whereas TP53P153D and TP53Y220C encode two structurally related proteins with gain-of-function effects that predispose to head musculature ERMS. TP53P153D unexpectedly also predisposes to hedgehog expressing medulloblastomas in the kRASG12D-driven ERMS-model.

Data availability

Data sets were submitted to DRYAD, available here: doi.org/10.5061/dryad.zgmsbccb6

The following data sets were generated

Article and author information

Author details

  1. Jiangfei Chen

    Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kunal Baxi

    Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Amanda E Lipsitt

    Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3757-8493
  4. Nicole Rae Hensch

    Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9946-0995
  5. Long Wang

    Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7935-4148
  6. Prethish Sreenivas

    Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Paulomi Modi

    Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Xiang Ru Zhao

    Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Antoine Baudin

    Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Daniel G Robledo

    Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Abhik Bandyopadhyay

    Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Aaron Sugalski

    Department of Pediatrics, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Anil K Challa

    Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Dias Kurmashev

    Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Andrea R Gilbert

    Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Gail E Tomlinson

    Department of Pediatrics, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Peter Houghton

    Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Yidong Chen

    Department of Population Health Sciences, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Madeline N Hayes

    Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  20. Eleanor Y Chen

    Department of Laboratory Medicine and Pathology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  21. David S Libich

    Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6492-2803
  22. Myron S Ignatius

    Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    For correspondence
    ignatius@uthscsa.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6639-7707

Funding

Cancer Prevention and Research Institute of Texas (Training Award,RP 170345)

  • Amanda E Lipsitt

St. Baldrick's Foundation

  • David S Libich

Welch Foundation

  • David S Libich

University of Texas Health Science Center at San Antonio (Greehey Graduate Fellowship in Children's Health)

  • Paulomi Modi

Hyundai Hope On Wheels (Young Investigator Grant)

  • Amanda E Lipsitt

Max and Minnie Tomerlin Voelcker Fund (Young Investigator Award)

  • Myron S Ignatius

Max and Minnie Tomerlin Voelcker Fund (Young Investigator Award)

  • David S Libich

University of Texas Health Science Center at San Antonio (Cancer T32 Fellow,T32CA148724)

  • Kunal Baxi

University of Texas Health Science Center at San Antonio (Translational Science TL1 Fellow,TL1TR002647)

  • Kunal Baxi

Cancer Prevention and Research Institute of Texas (Scholar Grant,RR160062)

  • Myron S Ignatius

University of Texas Health Science Center at San Antonio (Greehey Graduate Fellowship in Children's Health)

  • Nicole Rae Hensch

National Institutes of Health (R00CA1715184)

  • Peter Houghton
  • Myron S Ignatius

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal studies were approved by the UT Health San Antonio Institutional Animal Care and Use Committee (IACUC) under protocol #20150015AR (mice) and #20170101AR (zebrafish). Zebrafish images were taken with specimens under tricaine anesthesia. Zebrafish tumor extraction was performed by administering high dose tricaine to minimize suffering.

Human subjects: Patient presenting with osteosarcoma signed a Consent to be part of a Repository, Epidemiology of Cancer in Children, Adolescents and Adults. In brief, this allowed for the storage of tissue, cataloging of medical information, and for research to be conducted from collected samples. The study's IRB number is HSC20080057H. Patient was informed of the risks and benefits. The umbrella study covering epidemiological study and patient-derived xenograft generation is IRB approved through UT Health San Antonio.

Copyright

© 2023, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,278
    views
  • 176
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jiangfei Chen
  2. Kunal Baxi
  3. Amanda E Lipsitt
  4. Nicole Rae Hensch
  5. Long Wang
  6. Prethish Sreenivas
  7. Paulomi Modi
  8. Xiang Ru Zhao
  9. Antoine Baudin
  10. Daniel G Robledo
  11. Abhik Bandyopadhyay
  12. Aaron Sugalski
  13. Anil K Challa
  14. Dias Kurmashev
  15. Andrea R Gilbert
  16. Gail E Tomlinson
  17. Peter Houghton
  18. Yidong Chen
  19. Madeline N Hayes
  20. Eleanor Y Chen
  21. David S Libich
  22. Myron S Ignatius
(2023)
Defining function of wild-type and three patient specific TP53 mutations in a zebrafish model of embryonal rhabdomyosarcoma
eLife 12:e68221.
https://doi.org/10.7554/eLife.68221

Share this article

https://doi.org/10.7554/eLife.68221

Further reading

    1. Cancer Biology
    2. Immunology and Inflammation
    Sofia V Krasik, Ekaterina A Bryushkova ... Ekaterina O Serebrovskaya
    Research Article

    The current understanding of humoral immune response in cancer patients suggests that tumors may be infiltrated with diffuse B cells of extra-tumoral origin or may develop organized lymphoid structures, where somatic hypermutation and antigen-driven selection occur locally. These processes are believed to be significantly influenced by the tumor microenvironment through secretory factors and biased cell-cell interactions. To explore the manifestation of this influence, we used deep unbiased immunoglobulin profiling and systematically characterized the relationships between B cells in circulation, draining lymph nodes (draining LNs), and tumors in 14 patients with three human cancers. We demonstrated that draining LNs are differentially involved in the interaction with the tumor site, and that significant heterogeneity exists even between different parts of a single lymph node (LN). Next, we confirmed and elaborated upon previous observations regarding intratumoral immunoglobulin heterogeneity. We identified B cell receptor (BCR) clonotypes that were expanded in tumors relative to draining LNs and blood and observed that these tumor-expanded clonotypes were less hypermutated than non-expanded (ubiquitous) clonotypes. Furthermore, we observed a shift in the properties of complementarity-determining region 3 of the BCR heavy chain (CDR-H3) towards less mature and less specific BCR repertoire in tumor-infiltrating B-cells compared to circulating B-cells, which may indicate less stringent control for antibody-producing B cell development in tumor microenvironment (TME). In addition, we found repertoire-level evidence that B-cells may be selected according to their CDR-H3 physicochemical properties before they activate somatic hypermutation (SHM). Altogether, our work outlines a broad picture of the differences in the tumor BCR repertoire relative to non-tumor tissues and points to the unexpected features of the SHM process.

    1. Cancer Biology
    2. Computational and Systems Biology
    Rosalyn W Sayaman, Masaru Miyano ... Mark A LaBarge
    Research Article Updated

    Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55 y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression variance of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.