Defining function of wild-type and three patient specific TP53 mutations in a zebrafish model of embryonal rhabdomyosarcoma

Abstract

In embryonal rhabdomyosarcoma (ERMS) and generally in sarcomas, the role of wild-type and loss or gain-of-function TP53 mutations remains largely undefined. Eliminating mutant or restoring wild-type p53 is challenging; nevertheless, understanding p53 variant effects on tumorigenesis remains central to realizing better treatment outcomes. In ERMS, >70% of patients retain wild-type TP53, yet mutations when present are associated with worse prognosis. Employing a kRASG12D-driven ERMS tumor model and tp53 null (tp53-/-) zebrafish, we define wild-type and patient-specific TP53 mutant effects on tumorigenesis. We demonstrate that tp53 is a major suppressor of tumorigenesis, where tp53 loss expands tumor initiation from <35% to >97% of animals. Characterizing three patient-specific alleles reveals that TP53C176F partially retains wild-type p53 apoptotic activity that can be exploited, whereas TP53P153D and TP53Y220C encode two structurally related proteins with gain-of-function effects that predispose to head musculature ERMS. TP53P153D unexpectedly also predisposes to hedgehog expressing medulloblastomas in the kRASG12D-driven ERMS-model.

Data availability

Data sets were submitted to DRYAD, available here: doi.org/10.5061/dryad.zgmsbccb6

The following data sets were generated

Article and author information

Author details

  1. Jiangfei Chen

    Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kunal Baxi

    Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Amanda E Lipsitt

    Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3757-8493
  4. Nicole Rae Hensch

    Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9946-0995
  5. Long Wang

    Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7935-4148
  6. Prethish Sreenivas

    Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Paulomi Modi

    Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Xiang Ru Zhao

    Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Antoine Baudin

    Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Daniel G Robledo

    Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Abhik Bandyopadhyay

    Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Aaron Sugalski

    Department of Pediatrics, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Anil K Challa

    Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Dias Kurmashev

    Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Andrea R Gilbert

    Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Gail E Tomlinson

    Department of Pediatrics, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Peter Houghton

    Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Yidong Chen

    Department of Population Health Sciences, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Madeline N Hayes

    Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  20. Eleanor Y Chen

    Department of Laboratory Medicine and Pathology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  21. David S Libich

    Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6492-2803
  22. Myron S Ignatius

    Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    For correspondence
    ignatius@uthscsa.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6639-7707

Funding

Cancer Prevention and Research Institute of Texas (Training Award,RP 170345)

  • Amanda E Lipsitt

St. Baldrick's Foundation

  • David S Libich

Welch Foundation

  • David S Libich

University of Texas Health Science Center at San Antonio (Greehey Graduate Fellowship in Children's Health)

  • Paulomi Modi

Hyundai Hope On Wheels (Young Investigator Grant)

  • Amanda E Lipsitt

Max and Minnie Tomerlin Voelcker Fund (Young Investigator Award)

  • Myron S Ignatius

Max and Minnie Tomerlin Voelcker Fund (Young Investigator Award)

  • David S Libich

University of Texas Health Science Center at San Antonio (Cancer T32 Fellow,T32CA148724)

  • Kunal Baxi

University of Texas Health Science Center at San Antonio (Translational Science TL1 Fellow,TL1TR002647)

  • Kunal Baxi

Cancer Prevention and Research Institute of Texas (Scholar Grant,RR160062)

  • Myron S Ignatius

University of Texas Health Science Center at San Antonio (Greehey Graduate Fellowship in Children's Health)

  • Nicole Rae Hensch

National Institutes of Health (R00CA1715184)

  • Peter Houghton
  • Myron S Ignatius

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Stephen C Ekker, Mayo Clinic, United States

Ethics

Animal experimentation: Animal studies were approved by the UT Health San Antonio Institutional Animal Care and Use Committee (IACUC) under protocol #20150015AR (mice) and #20170101AR (zebrafish). Zebrafish images were taken with specimens under tricaine anesthesia. Zebrafish tumor extraction was performed by administering high dose tricaine to minimize suffering.

Human subjects: Patient presenting with osteosarcoma signed a Consent to be part of a Repository, Epidemiology of Cancer in Children, Adolescents and Adults. In brief, this allowed for the storage of tissue, cataloging of medical information, and for research to be conducted from collected samples. The study's IRB number is HSC20080057H. Patient was informed of the risks and benefits. The umbrella study covering epidemiological study and patient-derived xenograft generation is IRB approved through UT Health San Antonio.

Version history

  1. Received: March 9, 2021
  2. Preprint posted: April 22, 2021 (view preprint)
  3. Accepted: June 1, 2023
  4. Accepted Manuscript published: June 2, 2023 (version 1)
  5. Version of Record published: July 5, 2023 (version 2)

Copyright

© 2023, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 989
    views
  • 153
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jiangfei Chen
  2. Kunal Baxi
  3. Amanda E Lipsitt
  4. Nicole Rae Hensch
  5. Long Wang
  6. Prethish Sreenivas
  7. Paulomi Modi
  8. Xiang Ru Zhao
  9. Antoine Baudin
  10. Daniel G Robledo
  11. Abhik Bandyopadhyay
  12. Aaron Sugalski
  13. Anil K Challa
  14. Dias Kurmashev
  15. Andrea R Gilbert
  16. Gail E Tomlinson
  17. Peter Houghton
  18. Yidong Chen
  19. Madeline N Hayes
  20. Eleanor Y Chen
  21. David S Libich
  22. Myron S Ignatius
(2023)
Defining function of wild-type and three patient specific TP53 mutations in a zebrafish model of embryonal rhabdomyosarcoma
eLife 12:e68221.
https://doi.org/10.7554/eLife.68221

Share this article

https://doi.org/10.7554/eLife.68221

Further reading

    1. Cancer Biology
    2. Cell Biology
    Helmut Bischof, Selina Maier ... Robert Lukowski
    Research Article

    Alterations in the function of K+ channels such as the voltage- and Ca2+-activated K+ channel of large conductance (BKCa) reportedly promote breast cancer (BC) development and progression. Underlying molecular mechanisms remain, however, elusive. Here, we provide electrophysiological evidence for a BKCa splice variant localized to the inner mitochondrial membrane of murine and human BC cells (mitoBKCa). Through a combination of genetic knockdown and knockout along with a cell permeable BKCa channel blocker, we show that mitoBKCa modulates overall cellular and mitochondrial energy production, and mediates the metabolic rewiring referred to as the ‘Warburg effect’, thereby promoting BC cell proliferation in the presence and absence of oxygen. Additionally, we detect mitoBKCa and BKCa transcripts in low or high abundance, respectively, in clinical BC specimens. Together, our results emphasize, that targeting mitoBKCa could represent a treatment strategy for selected BC patients in future.

    1. Cancer Biology
    2. Immunology and Inflammation
    Brandon H Hayes, Mai Wang ... Dennis E Discher
    Research Article

    Solid tumors generally exhibit chromosome copy number variation, which is typically caused by chromosomal instability (CIN) in mitosis. The resulting aneuploidy can drive evolution and associates with poor prognosis in various cancer types as well as poor response to T-cell checkpoint blockade in melanoma. Macrophages and the SIRPα-CD47 checkpoint are understudied in such contexts. Here, CIN is induced in poorly immunogenic B16F10 mouse melanoma cells using spindle assembly checkpoint MPS1 inhibitors that generate persistent micronuclei and diverse aneuploidy while skewing macrophages toward a tumoricidal ‘M1-like’ phenotype based on markers and short-term anti-tumor studies. Mice bearing CIN-afflicted tumors with wild-type CD47 levels succumb similar to controls, but long-term survival is maximized by SIRPα blockade on adoptively transferred myeloid cells plus anti-tumor monoclonal IgG. Such cells are the initiating effector cells, and survivors make de novo anti-cancer IgG that not only promote phagocytosis of CD47-null cells but also suppress tumor growth. CIN does not affect the IgG response, but pairing CIN with maximal macrophage anti-cancer activity increases durable cures that possess a vaccination-like response against recurrence.