LMO2 is essential to maintain the ability of progenitors to differentiate into T-cell lineage in mice

  1. Ken-ichi Hirano
  2. Hiroyuki Hosokawa
  3. Maria Koizumi
  4. Yusuke Endo
  5. Takashi Yahata
  6. Kiyoshi Ando
  7. Katsuto Hozumi  Is a corresponding author
  1. Department of Immunology, Tokai University School of Medicine, Japan
  2. Institute of Medical Sciences, Tokai University, Japan
  3. Laboratory of Medical Omics Research, Kazusa DNA Research Institute, Japan
  4. Department of Omics Medicine, Graduate School of Medicine, Chiba University, Japan
  5. Department of Innovative Medical Science, Tokai University School of Medicine, Japan
  6. Department of Hematology and Oncology, Tokai University School of Medicine, Japan
6 figures, 1 table and 2 additional files

Figures

Figure 1 with 1 supplement
LMO2 is critical for the maintenance of T-cell differentiation potential in Ebf1-deficient pro-B cells.

(A) Establishment of Ebf1-deficient pro-B cell lines with or without differentiation potential to the T-cell lineage. Lineage markers (CD19, Gr1, TER119, NK1.1)-negative, c-kit-positive cells in Ebf1−/ FL were cultured on TD7 or OP9 cells, and Ebf1-deficient pro-B cell lines were established. Stably growing pro-B cells with or without T-cell potential (pro-B(+) or pro-B()) were cultured on OP9-Mock (Mock) or OP9-Dll4 (Dll4) cells with Flt3L, SCF, and IL7 for 6 days and analyzed for the expression of CD44 and CD25 (right panels) in the lymphoid cell gate (FSC vs. SSC, left panels) by flow cytometry. The numbers in the profiles indicate the relative percentages in each corresponding quadrant or fraction. Numbers of CD25+ cells (fold expansion/input) are shown with standard deviation (SD) (right). Statistical analysis was performed using the two-tailed Student’s t-test. **p<0.01. Data are representative of three independent experiments with similar results. (B) Reverse transcription (RT)-quantitative PCR (qPCR) detection of Meis1, Hmga2, Bcl11a, or Lmo2 transcripts in pro-B(−) (closed columns) and pro-B(+) (open columns) cells. Data represent the mean values of three independent biological replicates, and all values are normalized to the expression of Actb. Error bars indicate SD. Three independent experiments were performed, and similar results were obtained. (C) Representative intracellular staining profiles of LMO2 and c-Myc in pro-B() (open blue line) and pro-B(+) (open red line) cells are shown. Closed lines (orange) represent staining with control rabbit mAb of pro-B() and pro-B(+), which were completely merged. The average mean fluorescent intensity (MFI) of LMO2 is shown with SD (right). A two-tailed Student’s t-test was used for statistical analysis. **p<0.01. Three independent experiments were performed with similar results. (D) Introduction of Lmo2 is sufficient to maintain the T-cell differentiation potential in pro-B cells. Empty vector- or Lmo2-transduced pro-B() cells (pro-B()/Mock or pro-B()/LMO2) were cultured on OP9-Dll4 for 6 days and analyzed for the expression of CD44 and CD25 (right panels) in lymphoid cell gate (left panels) and rat CD2+ (lentivirus-infected) CD45+ fraction. Numbers of CD25+ cells (relative expansion/input) are shown with SD (right). **p<0.01 by two-sided Student’s t-test. Six independent experiments were performed with similar results.

Figure 1—figure supplement 1
Characterization of pro-B(+) and pro-B(−) cells.

(A) The stromal cell line TD7 can support B-cell differentiation. BM progenitor cells from C57BL/6 mice were co-cultured with the TD7 or OP9 thymic stromal cells for 6 days. Representative CD19 profiles in lymphocytes are shown. Results represent two independent biological replicates. (B) Lin+ cells are generated more frequently on TD7 than on OP9 monolayers. Fetal liver-derived HSCs from Ebf1-deficient mice were cultured on TD7 or OP9 monolayers for 3 days. Representative CD11b/Gr1 profiles among the CD45+ lymphocytes are shown. Results are representative of two independent biological replicates. (C) Pro-B(−) and pro-B(+) cells express intermediate levels of B220. B220 expression in pro-B(−) and pro-B(+) cells is shown. Results represent three independent replicates. (D) Pro-B(+) cells were co-cultured with OP9-Dll4, 1 ng/ml of IL-7, and 5 ng/ml of Flt3L for 3 weeks. Thereafter, the cells were subjected to flow cytometric analysis. A representative CD4/CD8 profile in lymphocytes is shown. Results represent two independent biological replicates. (E) Pro-B(+) cells (5 × 106, CD45.2) were mixed with BM cells obtained from wild-type congenic mice (2 × 105, CD45.1) and transplanted into the lethally irradiated (9 Gy) Rag2/Cg-deficient hosts. The recipient mice were analyzed after 5 weeks of transplantation. Flow cytometric analysis of thymocytes and splenocytes was performed. Representative CD4/CD8 profiles among the CD45.2+ thymocytes (left) and splenocytes (right) are shown. Results are representative of two independent biological replicates. (F) Pro-B(−) and pro-B(+) cells express comparable levels of Notch receptors on their surface. Representative Notch1, Notch2, Notch3, and Notch4 profiles on pro-B(−) and pro-B(+) cells are shown. Results are representative of two independent biological replicates. (G) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation of the differentially expressed genes in pro-B(+) and pro-B(−) cells (Supplementary file 1, FC > 10, n = 387) was performed using the DAVID analysis tools (https://david.ncifcrf.gov/). Top three KEGG pathway annotations are shown. Data are based on two independent biological replicates.

Figure 2 with 1 supplement
Loss of Lmo2 leads to the differentiation arrest in pro-B(+) cells.

(A) An experimental scheme for the deletion of Lmo2 using the CRISPR/Cas9 system in pro-B cell lines is shown. (B) Retroviral vectors encoding sgRNA against luciferase (sgCont.) or LMO2 (sgLMO2) were introduced into Cas9-expressing (GFP+) pro-B(+) cells. Five (cultured on OP9-Mock for 5 days, left panels) or 10 days (cultured on OP9-Mock for 10 days, right panels) after co-cultured on OP9-Mock cells following the infection, pro-B cells were cultured again on OP9-Mock (Mock) or OP9-Dll4 (Dll4) stromal cells for 3 days. GFP+hNGFR+ sgRNA-transduced cells were gated and analyzed for CD44 and CD25 expression (left). The percentages and numbers of CD25+ cells among GFP+hNGFR+ sgRNA-transduced cells, cultured on OP9-Dll4, are shown with SD (right). The data represent the mean values of three independent biological replicates. Each value is indicated by a closed circle. **p<0.01 by two-sided Student’s t-test.

Figure 2—figure supplement 1
CRISPR/Cas9-mediated deletion of Lmo2 in BM progenitors.

(A) Experimental scheme for Lmo2 deletion in primary BM progenitor cells using the CRISPR/Cas9 system is shown. (B) Flow cytometric analysis of BM progenitors transduced with sgRNA and co-cultured with OP9-Dll1 for 4 days. Representative CD45/hNGFR (sgRNA) profiles in single cells, FSC/Lin profiles in CD45+hNGFR+ cells, and CD44/CD25 profiles in CD45+hNGFR+Lin- cells are shown. Results are representative of three biological replicates. Percentages of CD25+ cells among the CD45+hNGFR+Lin- cells are shown with SD (right). (C) Specific depletion of targeted LMO2 protein. Four days after sgRNA transduction in Figure 2A, lysates from retrovirus-infected GFP+hNGFR+ Pro-B(+) cells were subjected to immunoblotting for LMO2. Two independent experiments were performed with similar results.

Figure 3 with 1 supplement
LMO2 regulates survival of Ebf1-deficient pro-B cells via Bcl11a/Bcl2 pathway.

(A) RT-qPCR detection of Meis1, Hmga2, and Bcl11a transcripts in Lmo2- (red column), Meis1-transfected (green column) pro-B(−) cells, parent pro-B(−) (black column), and pro-B(+) (white column) cells, as shown in Figure 1B. Two independent experiments were performed with similar results. (B) Overexpression of Bcl2 improves cell survival of pro-B(−) cells. Pro-B(+) cells (open column) and empty vector (mock) or human BCL2 (Bcl2)-transduced pro-B(−) cells were cultured on OP9-Mock or OP9-Dll4 for 2 days. After culturing, the dead cells were detected by staining for Annexin V and 7-AAD in CD45+ and hNGFR+ (retrovirus-infected) cell populations (Figure 3—figure supplement 1). The cell death index was calculated as the difference in the percentage of dead cells in pro-B cells after co-culturing with OP9-Mock and OP9-Dll4. The data represent the mean values of three independent biological replicates with SD. **p<0.01 by two-sided Student’s t-test. (C) Bcl2 overexpression does not provide differentiation potential in pro-B(−) cells. Pro-B(−) or pro-B(+) cells with human BCL2 (pro-B(−)/Bcl2, pro-B(+)/Bcl2) were cultured on OP9-Dll4 as shown in Figure 1D. After culturing, the live cells were analyzed for the expression of CD44 and CD25 (left). The data represent the mean values of percentages of CD25+ cells in three independent biological replicates with SD (right). ***p<0.001 by two-sided Student’s t-test.

Figure 3—figure supplement 1
Overexpression of Bcl2 improves the cell survival in pro-B(−) cells.

Pro-B(+) cells and empty vector (mock) or human BCL2-transduced pro-B(−) cells (pro-B(−)/Mock or pro-B(−)/Bcl2) were cultured on OP9-Mock (Mock) or OP9-Dll4 (Dll4) for 2 days. After the cultures, the dead cells were detected by the staining of both AnnexinV and 7-AAD in CD45+ and hNGFR+ (retrovirus-infected) cell population. Numbers in the profiles indicate the relative percentages for each corresponding fraction. Three independent experiments were performed with similar results. The ratio of AnnexinV+7-AAD+ cells in pro-B cells co-cultured with OP9-Mock and OP9-Dll4 (OP9-Dll4/OP9-Mock) is shown with SD (right).

Figure 4 with 1 supplement
LMO2 is required for activation of Tcf7 after Notch signaling.

(A) Expression levels of Tcf7 and Gata3 in pro-B(−) and pro-B(+) cells with exogenous BCL2, at 0–5 days after the culture on OP9-Dll4, were analyzed by RT-qPCR. The relative expression (/Actb) is shown with SD. *p<0.05, **p<0.01 by two-sided Student’s t-test. (B) Intracellular staining of TCF1 or GATA3 in pro-B(+)/Bcl2 (upper panels) and pro-B(−)/Bcl2 (lower panels) was performed at day 7 after Notch stimulation; representative expression profiles of CD44 and CD25 are also shown (left). Results are representative of three independent experiments. (C) Introduction of Tcf7 provides differentiation potential for T-cell lineage to pro-B(−)/Bcl2. Pro-B(−)/Bcl2 cells were infected with either empty control or Tcf7-containing lentivirus, and the cells were co-cultured on OP9-Mock (upper panels) or OP9-Dll4 (lower panels) for 3 days. Lentivirus-infected cells were analyzed for the expression of CD44 and CD25. Three independent experiments were performed with similar results. The percentages of CD25+ cells are shown with SD (right). ***p<0.001 by two-sided Student’s t-test.

Figure 4—figure supplement 1
Down-regulation of Tcf7 in Lmo2-deficient pro-B(+) cells.

Expression levels of Tcf7 in Cas9-expressing pro-B(+) cells co-cultured with OP9-Mock for 5 or 10 days after sgRNA transduction (Figure 2A) were analyzed using RT-qPCR.

Relative expression of Actb is shown with SD. *p<0.05, **p<0.01 by two-sided Student’s t-test. Data are based on three biological replicates.

Figure 5 with 1 supplement
DNA methylation status of the Tcf7 locus is maintained by LMO2.

(A) A CpG island at the transcriptional start sites (TSSs) of the Tcf7 locus, which contains 25 potential CpG methylation sites. (B) The DNA methylation status of CpG island at the TSSs of the Tcf7 locus was determined by bisulfite sequencing in pro-B(−), pro-B(+), and LMO2-transduced pro-B(−) cells (pro-B(−)/LMO2). Bisulfite-converted genomic DNA around the TSSs of Tcf7 was amplified using PCR, and each PCR product was sequenced. The 25 horizontal circles each represent a CpG sequence derived from a single PCR product (17 clones from pro-B(−) cells, 9 clones from pro-B(+) cells, and 16 clones from pro-B(−)/LMO2 cells). Closed and open circles indicate methylated and demethylated CpG sites, respectively. The frequencies of the methylated CpGs are shown with SD. Data are based on two independent pooled experiments.

Figure 5—figure supplement 1
H3K4-3Me levels around the Tcf7 locus in Lmo2-deficient cells.

Cas9-expressing pro-B(+) cells were co-cultured with OP9-Mock for 5 or 10 days after sgRNA transduction (Figure 2A) and then purified.

H3K4-3Me levels around the Tcf7 locus were determined using the ChIP assay and qPCR analysis. The mean values (% input) are shown with SD. Data are based on three independent experiments. *p<0.05, **p<0.01 by two-sided Student’s t-test.

Figure 6 with 1 supplement
LMO2 binds to the upstream region of the Tcf7 locus.

(A) LMO2 ChIP-seq analyses were performed using the pro-B(+) cell line. The top three enriched sequence motifs among the 1585 reproducible LMO2 peaks are shown. Data are based on ChIP-seq peaks scored as reproducible in two replicate samples. (B) ChIP-seq tracks showing two replicates of LMO2 binding profiles around the Lyl1, Erg, Hhex, Tcf7, and Bcl11a loci in pro-B(+) cell line with tracks for 1% input.

Figure 6—figure supplement 1
LMO2 binds to one of the RBPJ and Runx1 binding sites at the Tcf7 locus.

ChIP-seq tracks show binding profiles of LMO2 in pro-B(+) cells, and RBPJ and Runx1 in DN1 cells (GSE148441, GSE110020) around the Tcf7 locus. The conservation track is also shown at the bottom. The −31 and −35 kb RBPJ binding sites are labeled with rectangles. Data are representative of two independent experiments.

Tables

Key resources table
Reagent type
(species) or
resource
DesignationSource or
reference
IdentifiersAdditional
information
Genetic reagent (Mus musculus)Ebf1+/-Pongubala et al., 2008Provided by Dr. Grosschedl,
Max Planck Institute of
Immunobiology and
Epigenetics
Genetic reagent (Mus musculus)B6.Cg-Tg(BCL2)25Wehi/JJackson LaboratoryStock# 002320
Genetic reagent (Mus musculus)B6.Gt(ROSA)26Sortm1.1(CAG-cas9*,-EGFP)Fezh/JJackson LaboratoryStock# 024858
Cell line (Mus musculus)OP9Yokoyama et al., 2013Stromal cell line derived from fetal murine calvaria (B6 x C3H, op/op)
Cell line (Mus musculus)TD7This paperMouse fetal thymus (B6, E15.5)-derived mesenchymal cell line
Cell line (Mus musculus)Pro-B(+)This paperEbf1-deficient fetal liver-derived hematopoietic progenitor cell line
Cell line (Mus musculus)Pro-B(−)This paperEbf1-deficient fetal liver-derived hematopoietic progenitor cell line
Cell line (Mus musculus)OP9-Dll4Hirano et al., 2020
Cell line (Homo sapiens)HEK293THirano et al., 2020RRID:CVCL_0063
Cell line (Homo sapiens)PLAT-EHirano et al., 2020RRID:CVCL_B488
AntibodyFITC anti-mouse CD4 (Rat monoclonal)BD BiosciencesCat# 561835 RRID:AB_10894386FC (1:500)
AntibodyPE anti-mouse CD4 (Rat monoclonal)BD BiosciencesCat# 561829 RRID:AB_10926205FC (1:500)
AntibodyAPC anti-mouse CD8a (Rat monoclonal)BioLegendCat# 100711 RRID:AB_312750FC (1:500)
AntibodyAPCCy7 anti-mouse CD8a (Rat monoclonal)BioLegendCat# 100713 RRID:AB_312752FC (1:500)
AntibodyPerCpCy5.5 anti-mouse CD11b (Rat monoclonal)BioLegendCat# 101227 RRID:AB_893233FC (1:500)
AntibodyPECy7 anti-mouse CD19 (Rat monoclonal)Tonbo BiosciencesCat# 60-0193 RRID:AB_2621840FC (1:250)
AntibodyPerCpCy5.5 anti-mouse CD25 (Rat monoclonal)eBioscienceCat# 45-0251-82 RRID:AB_914324FC (1:1000)
AntibodyAPC-e780 anti-mouse CD25 (Rat monoclonal)eBioscienceCat# 47-0251-82 RRID:AB_1272179FC (1:200)
AntibodyFITC anti-mouse CD44 (Rat monoclonal)BioLegendCat# 103005 RRID:AB_312956FC (1:500)
AntibodyAPCCy7 anti-mouse CD44 (Rat monoclonal)BioLegendCat# 103027 RRID:AB_830784FC (1:500)
AntibodyPECy7 anti-mouse CD45 (Rat monoclonal)eBioscienceCat# 25-0451-82 RRID:AB_2734986FC (1:400)
AntibodyAPC anti-mouse CD45 (Rat monoclonal)BioLegendCat# 103111 RRID:AB_312976FC (1:1000)
AntibodyPE anti-mouse CD45.1 (Mouse monoclonal)BioLegendCat# 110727 RRID:AB_893348FC (1:250)
AntibodyPerCpCy5.5 anti-mouse CD45.2 (Mouse monoclonal)BioLegendCat# 109807 RRID:AB_313444FC (1:250)
AntibodyPerCpCy5.5 anti-mouse B220 (Rat monoclonal)BioLegendCat# 103235 RRID:AB_893356FC (1:200)
AntibodyAPCCy7 anti-mouse Thy1.2 (Rat monoclonal)BioLegendCat# 105327 RRID:AB_10613280FC (1:1000)
AntibodyFITC anti-mouse Gr-1 (Rat monoclonal)BioLegendCat# 108405
RRID:AB_313370
FC (1:500)
AntibodyBiotin anti-mouse Gr-1 (Rat monoclonal)eBioscienceCat# 13-5931-86 RRID:AB_466802FC (1:300)
AntibodyBiotin anti-mouse TER119 (Rat monoclonal)eBioscienceCat# 13-5921-85 RRID:AB_466798FC (1:300)
AntibodyBiotin anti-mouse CD11b (Rat monoclonal)eBioscienceCat# 13-0112-86 RRID:AB_466361FC (1:300)
AntibodyBiotin anti-mouse CD11c (Armenian Hamster monoclonal)eBioscienceCat# 13-0114-85 RRID:AB_466364FC (1:300)
AntibodyBiotin anti-mouse CD19 (Rat monoclonal)eBioscienceCat# 13-0193-85 RRID:AB_657658FC (1:300)
AntibodyBiotin anti-mouse NK1.1 (Rat monoclonal)eBioscienceCat# 13-5941-85 RRID:AB_466805FC (1:300)
AntibodyBiotin anti-mouse CD3ε (Armenian Hamster monoclonal)eBioscienceCat# 13-0031-82 RRID:AB_466319FC (1:300)
AntibodyPE anti-rat CD2 (Mouse monoclonal)BioLegendCat# 201305 RRID:AB_2073811FC (1:500)
AntibodyPE anti-human NGFR (Mouse monoclonal)eBioscienceCat# 12-9400-42 RRID:AB_2572710FC (1:500)
AntibodyPE Hamster IgG
(Armenian Hamster monoclonal)
BioLegendCat# 400907 RRID:AB_326593FC (1:200)
AntibodyPE anti-mouse Notch1
(Armenian Hamster monoclonal)
BioLegendCat# 130607 RRID:AB_1227719FC (1:200)
AntibodyPE anti-mouse Notch2
(Armenian Hamster monoclonal)
BioLegendCat# 130707 RRID:AB_1227725FC (1:200)
AntibodyPE anti-mouse Notch3
(Armenian Hamster monoclonal)
BioLegendCat# 130507 RRID:AB_1227733FC (1:200)
AntibodyPE anti-mouse Notch4
(Armenian Hamster monoclonal)
BioLegendCat# 128407 RRID:AB_1133997FC (1:200)
AntibodyAlexa Fluor 647 Mouse IgG1 (Mouse monoclonal)BioLegendCat# 400130 RRID:AB_2800436FC (2 µl per test)
AntibodyAlexa Fluor 647 anti-GATA3 (Mouse monoclonal)BD BiosciencesCat# 560068 RRID:AB_1645316FC (8 µl per test)
AntibodyRabbit-IgG (Rabbit monoclonal)Cell Signaling TechnologyCat# 3900 RRID:AB_1550038FC (1:500)
AntibodyAnti-TCF1 (Rabbit monoclonal)Cell Signaling TechnologyCat# 2203 RRID:AB_2199302FC (1:100)
AntibodyAnti-LMO2 (Rabbit monoclonal)AbcamCat# ab91652 RRID:AB_2049879FC (1:200)
ChIP (2ug/sample)
AntibodyAnti-c-Myc (Rabbit monoclonal)Cell Signaling TechnologyCat# 5605 RRID:AB_1903938FC (1:100)
AntibodyDyLight 488 anti-rabbit IgG
(Donkey polyclonal)
BioLegendCat# 406404 RRID:AB_1575130FC (1:250)
AntibodyDyLight 649 anti-rabbit IgG
(Donkey polyclonal)
BioLegendCat# 406406 RRID:AB_1575135FC (1:500)
AntibodyAnti-Tubulinα (Mouse monoclonal)SigmaCat# T6199 RRID:AB_477583WB (1:1000)
AntibodyAnti-LMO2 (Mouse monoclonal)NovusCat# NB110-78626 RRID:AB_1084895WB (1:1000)
ChIP (2 µg/sample)
AntibodyAnti-human LMO2 (Goat polyclonal)R&D SystemsCat# AF2726 RRID:AB_2249968ChIP (2 µg/sample)
AntibodyAnti-H3K4me3 (Rabbit polyclonal)MilliporeCat# 07-473 RRID:AB_1977252ChIP (5 µl/sample)
Recombinant DNA reagent (plasmid)pCMV-VSV-G-RSV-RevRIKEN BRCCat# RDB04393Lentiviral packaging plasmid
Recombinant DNA reagent (plasmid)pCAG-HIVgpRIKEN BRCCat# RDB04394Lentiviral packaging plasmid
Recombinant DNA reagent (plasmid)pLVS-EF-IR2This paperLentiviral vector with IRES-rat CD2
Recombinant DNA reagent (plasmid)mLmo2/pLVS-EF-IR2This paperpLVS-EF-IR2
Lentiviral vector
encoding mLmo2
Recombinant DNA reagent (plasmid)mTcf7/pLVS-EF-IR2This paperpLVS-EF-IR2
Lentiviral vector
encoding mTcf7
Recombinant DNA reagent (plasmid)GCDNHirano et al., 2015Retroviral vector with IRES-human NGFR
Recombinant DNA reagent (plasmid)hBCL2/GCDNThis paperGCDN
Retroviral vector
encoding hBCL2
Recombinant DNA reagent (plasmid)mMeis1/GCDNThis paperGCDN
Retroviral vector
encoding mMeis1
Recombinant DNA reagent (plasmid)mHmga2/GCDNThis paperGCDN
Retroviral vector
encoding mHmga2
Recombinant DNA reagent (plasmid)Cas9-GFPHosokawa et al., 2018Retroviral vector to
express Cas9
and GFP
Recombinant DNA reagent (plasmid)E42-dTetHosokawa et al., 2018Retroviral vector to
express sgRNA and
human NGFR
Recombinant DNA reagent (plasmid)sgRNA against Luciferase (control)Hosokawa et al., 20185’-ggcatttcgcag
cctaccg-3’
Recombinant DNA reagent (plasmid)sgRNA against LMO2 #1This paper5’-tcgatggccgag
gacattg-3’
Recombinant DNA reagent (plasmid)sgRNA against LMO2 #2This paper5’-aatgtcctcggc
catcgaa-3’
Recombinant DNA reagent (plasmid)sgRNA against LMO2 #3This paper5’-gaaagccatcga
ccagtac-3’
Sequence-based reagentActB (Forward)This paperPCR primers5’-tacagcccgggg
agcat-3’
Sequence-based reagentActB (Reverse)This paperPCR primers5’-acacccgccac
cagttc-3’
Sequence-based reagentMeis1 (Forward)This paperPCR primers5’-gacgctttaaag
agagataaagatgc-3’
Sequence-based reagentMeis1 (Reverse)This paperPCR primers5’- catttctcaaa
aatcagtgctaaga -3’
Sequence-based reagentHmga2 (Forward)This paperPCR primers5’-aaggcagcaaaa
acaagagc-3’
Sequence-based reagentHmga2 (Reverse)This paperPCR primers5’-gccgtttttctc
caatggt-3’
Sequence-based reagentBcl11a (Forward)This paperPCR primers5’-ccaaacaggaac
acacatagcaga-3’
Sequence-based reagentBcl11a (Reverse)This paperPCR primers5’-ggggattagagc
tccgtgt-3’
Sequence-based reagentGata3 (Forward)This paperPCR primers5’-ttatcaagccca
agcgaag-3’
Sequence-based reagentGata3 (Reverse)This paperPCR primers5’-tggtggtggtct
gacagttc-3’
Sequence-based reagentLmo2 (Forward)This paperPCR primers5’-gaggcgcctcta
ctacaa-3’
Sequence-based reagentLmo2 (Reverse)This paperPCR primers5’-gatccgcttgtcacaggatg-3’
Sequence-based reagentTcf7 (Forward)This paperPCR primers5’-cagctcccccatactgtgag-3’
Sequence-based reagentTcf7 (Reverse)This paperPCR primers5’-tgctgtctatatccgcaggaa-3’
Sequence-based reagentTcf7 promoter region (Forward)This paperPCR primers5’-ttaagtttttattggtgaatgagtt-3’
Sequence-based reagentTcf7 promoter region (Reverse)This paperPCR primers5’-aaaaaactccaaaaataaaacccac-3’
Sequence-based reagentTcf7 TSS (Forward)This paperPCR primers5’-gcagcaagggttgcattt-3’
Sequence-based reagentTcf7 TSS (Reverse)This paperPCR primers5’-ttgtctgtactgggctgtttacat-3’
Sequence-based reagentTcf7 -31kb (Forward)This paperPCR primers5’-ttccatccaccgttttgttt-3’
Sequence-based reagentTcf7 -31kb (Reverse)This paperPCR primers5’-ggcgtgtggtgggaatacta-3’
Sequence-based reagentTcf7 -35kb (Forward)This paperPCR primers5’-ctgcaagcagctggaagtc-3’
Sequence-based reagentTcf7 -35kb (Reverse)This paperPCR primers5’-cactggaagctgtgagtgatg-3’
Sequence-based reagentIgk 3’UTR (Forward)This paperPCR primers5’-ggcacatctgttgctttcgc -3’
Sequence-based reagentIgk 3’UTR (Reverse)This paperPCR primers5’-ggggtaggga
gcaggtgtat-3’
Peptide, recombinant proteinPerCpCy5.5 streptavidinBioLegendCat# 405214FC (1:200)
Peptide, recombinant proteinRecombinant Mouse SCFPeproTechCat# 250-03
Peptide, recombinant proteinRecombinant Human FLT3LPeproTechCat# 300-19
Peptide, recombinant proteinRecombinant Mouse IL-7PeproTechCat# 217-17
Commercial assay or kitFoxp3 / Transcription Factor Staining SeteBioscienceCat# 00-5523-00Used to detect TCF1 and GATA3
Commercial assay or kitFixation/Permeabilization Solution Kit with BD GolgiStopBD BiosciencesCat# 554715Used to detect Lmo2 and c-Myc
Commercial assay or kitPermeabilization Buffer PlusBD BiosciencesCat# 561651Used to detect Lmo2 and c-Myc
Commercial assay or kitHigh Capacity cDNA Reverse Transcription KitThermo Fisher ScientificCat# 4368814
Commercial assay or kitNucleoSpin TissueTaKaRa BioCat# 740952.50
Commercial assay or kitMethylEasy XceedTaKaRa BioCat# ME002
Commercial assay or kitTaKaRa EpiTaq HS (for bisulfite-treated DNA)TaKaRa BioCat# R110A
Commercial assay or kitMighty TA-cloning kitTaKaRa BioCat# 6028
Commercial assay or kitAnti-Biotin MicroBeadsMiltenyi BiotecCat# 130-090-485
Commercial assay or kitDynabeads Protein AThermo Fisher ScientificCat# 10001D
Commercial assay or kitDynabeads Protein GThermo Fisher ScientificCat# 10003D
Commercial assay or kitDynabeads M-280 Sheep Anti-Rabbit IgGThermo Fisher ScientificCat# 11203D
Commercial assay or kitNE-PER Nuclear and Cytoplasmic Extraction ReagentsPierceCat# 78833
Commercial assay or kitPCR purification KitQiagenCat# 28004
Commercial assay or kitFast SYBR Green Master MixThermo Fisher ScientificCat# 4385614
Commercial assay or kitNEBNext Ultra II DNA Library Prep with Sample Purification BeadsNEBCat# E7103S
Commercial assay or kitNEBNext Multiplex Oligos for IlluminaNEBCat# E7500S
Chemical compound, drugTrizol reagentThermo Fisher ScientificCat# 15596026
Chemical compound, drug7-AADBioLegendCat# 420403FC (1:50)
Chemical compound, drugAlexa Fluor 647 Annexin VBioLegendCat# 640911FC (1:40)
Chemical compound, drugDSG (disuccinimidyl glutarate)Thermo Fisher ScientificCat# 205931 mg/ml
Software, algorithmFlowJoBD BiosciencesRRID:SCR_008520

Additional files

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ken-ichi Hirano
  2. Hiroyuki Hosokawa
  3. Maria Koizumi
  4. Yusuke Endo
  5. Takashi Yahata
  6. Kiyoshi Ando
  7. Katsuto Hozumi
(2021)
LMO2 is essential to maintain the ability of progenitors to differentiate into T-cell lineage in mice
eLife 10:e68227.
https://doi.org/10.7554/eLife.68227