Striking parallels between dorsoventral patterning in Drosophila and Gryllus reveal a complex evolutionary history behind a model gene regulatory network

  1. Matthias Pechmann  Is a corresponding author
  2. Nathan James Kenny
  3. Laura Pott
  4. Peter Heger
  5. Yen-Ta Chen
  6. Thomas Buchta
  7. Orhan Özüak
  8. Jeremy A Lynch
  9. Siegfried Roth  Is a corresponding author
  1. University of Cologne, Germany
  2. The Natural History Museum, United Kingdom
  3. University of Illinois at Chicago, United States

Abstract

Dorsoventral pattering relies on Toll and BMP signalling in all insects studied so far, with variations in the relative contributions of both pathways. Drosophila and the beetle Tribolium share extensive dependence on Toll, while representatives of more distantly related lineages like the wasp Nasonia and bug Oncopeltus rely more strongly on BMP signalling. Here, we show that in the cricket Gryllus bimaculatus, an evolutionarily distant outgroup, Toll has, like in Drosophila, a direct patterning role for the ventral half of the embryo. In addition, Toll polarizes BMP signalling, although this does not involve the conserved BMP inhibitor Sog/Chordin. Finally, Toll activation relies on ovarian patterning mechanisms with striking similarity to Drosophila. Our data suggest two surprising hypotheses: 1) that Toll's patterning function in Gryllus and Drosophila is the result of convergent evolution or 2) a Drosophila-like system arose early in insect evolution, and was extensively altered in multiple independent lineages.

Data availability

Raw reads from our sequencing are available from the NCBI SRA under accession PRJNA492804The Gryllus transcriptome is available from 10.6084/m9.figshare.14211062

The following data sets were generated

Article and author information

Author details

  1. Matthias Pechmann

    Institute for Zoology/Developmental Biology, University of Cologne, Köln, Germany
    For correspondence
    pechmanm@uni-koeln.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0043-906X
  2. Nathan James Kenny

    Life Sciences Department, The Natural History Museum, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4816-4103
  3. Laura Pott

    Insitute for Zoology/Developmental Biology, Biocenter, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3314-6239
  4. Peter Heger

    Institute for Genetics, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2583-2981
  5. Yen-Ta Chen

    Institute for Developmental Biology, University of Cologne, Köln, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Thomas Buchta

    Insitute for Zoology/Developmental Biology, Biocenter, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Orhan Özüak

    Insitute for Zoology/Developmental Biology, Biocenter, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Jeremy A Lynch

    Department of Biological Sciences, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7625-657X
  9. Siegfried Roth

    Institute for Zoology/Developmental Biology, University of Cologne, Köln, Germany
    For correspondence
    siegfried.roth@uni-koeln.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5772-3558

Funding

University of Cologne (Postdoc grant)

  • Matthias Pechmann

Deutsche Forschungsgemeinschaft (CRC 680)

  • Yen-Ta Chen

Deutsche Forschungsgemeinschaft (CRC 680)

  • Thomas Buchta

Deutsche Forschungsgemeinschaft (CRC 680)

  • Thomas Buchta

Deutsche Forschungsgemeinschaft (CRC 680)

  • Orhan Özüak

Deutsche Forschungsgemeinschaft (CRC 680)

  • Jeremy A Lynch

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Pechmann et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,152
    views
  • 243
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthias Pechmann
  2. Nathan James Kenny
  3. Laura Pott
  4. Peter Heger
  5. Yen-Ta Chen
  6. Thomas Buchta
  7. Orhan Özüak
  8. Jeremy A Lynch
  9. Siegfried Roth
(2021)
Striking parallels between dorsoventral patterning in Drosophila and Gryllus reveal a complex evolutionary history behind a model gene regulatory network
eLife 10:e68287.
https://doi.org/10.7554/eLife.68287

Share this article

https://doi.org/10.7554/eLife.68287

Further reading

    1. Evolutionary Biology
    Ljiljana Mihajlovic, Bharat Ravi Iyengar ... Yolanda Schaerli
    Research Article

    Gene duplication drives evolution by providing raw material for proteins with novel functions. An influential hypothesis by Ohno (1970) posits that gene duplication helps genes tolerate new mutations and thus facilitates the evolution of new phenotypes. Competing hypotheses argue that deleterious mutations will usually inactivate gene duplicates too rapidly for Ohno’s hypothesis to work. We experimentally tested Ohno’s hypothesis by evolving one or exactly two copies of a gene encoding a fluorescent protein in Escherichia coli through several rounds of mutation and selection. We analyzed the genotypic and phenotypic evolutionary dynamics of the evolving populations through high-throughput DNA sequencing, biochemical assays, and engineering of selected variants. In support of Ohno’s hypothesis, populations carrying two gene copies displayed higher mutational robustness than those carrying a single gene copy. Consequently, the double-copy populations experienced relaxed purifying selection, evolved higher phenotypic and genetic diversity, carried more mutations and accumulated combinations of key beneficial mutations earlier. However, their phenotypic evolution was not accelerated, possibly because one gene copy rapidly became inactivated by deleterious mutations. Our work provides an experimental platform to test models of evolution by gene duplication, and it supports alternatives to Ohno’s hypothesis that point to the importance of gene dosage.

    1. Evolutionary Biology
    Lucy A Winder, Mirre JP Simons, Terry Burke
    Research Article

    Life-history theory, central to our understanding of diversity in morphology, behaviour, and senescence, describes how traits evolve through the optimisation of trade-offs in investment. Despite considerable study, there is only minimal support for trade-offs within species between the two traits most closely linked to fitness – reproductive effort and survival – questioning the theory’s general validity. We used a meta-analysis to separate the effects of individual quality (positive survival/reproduction correlation) from the costs of reproduction (negative survival/reproduction correlation) using studies of reproductive effort and parental survival in birds. Experimental enlargement of brood size caused reduced parental survival. However, the effect size of brood size manipulation was small and opposite to the effect of phenotypic quality, as we found that individuals that naturally produced larger clutches also survived better. The opposite effects on parental survival in experimental and observational studies of reproductive effort provide the first meta-analytic evidence for theory suggesting that quality differences mask trade-offs. Fitness projections using the overall effect size revealed that reproduction presented negligible costs, except when reproductive effort was forced beyond the maximum level observed within species, to that seen between species. We conclude that there is little support for the most fundamental life-history trade-off, between reproductive effort and survival, operating within a population. We suggest that within species the fitness landscape of the reproduction–survival trade-off is flat until it reaches the boundaries of the between-species fast–slow life-history continuum. Our results provide a quantitative explanation as to why the costs of reproduction are not apparent and why variation in reproductive effort persists within species.