Evaluating distributional regression strategies for modelling self-reported sexual age-mixing

  1. Timothy M Wolock  Is a corresponding author
  2. Seth Flaxman
  3. Kathryn A Risher
  4. Tawanda Dadirai
  5. Simon Gregson
  6. Jeff Eaton
  1. Imperial College London, United Kingdom
  2. Biomedical Research and Training Institute, Zimbabwe

Abstract

The age dynamics of sexual partnership formation determine patterns of sexually transmitted disease transmission and have long been a focus of researchers studying human immunodeficiency virus. Data on self-reported sexual partner age distributions are available from a variety of sources. We sought to explore statistical models that accurately predict the distribution of sexual partner ages over age and sex. We identified which probability distributions and outcome specifications best captured variation in partner age and quantified the benefits of modelling these data using distributional regression. We found that distributional regression with a sinh-arcsinh distribution replicated observed partner age distributions most accurately across three geographically diverse data sets. This framework can be extended with well-known hierarchical modelling tools and can help improve estimates of sexual age-mixing dynamics.

Data availability

Data from the Demographic and Health Surveys are available from the DHS Program website (https://dhsprogram.com/data/available-datasets.cfm). Data from the Africa Centre Demographic Information System are available on request from the AHRI website (https://data.ahri.org/index.php/home). Data from the Manicaland study were used with permission from the study investigators (http://www.manicalandhivproject.org/manicaland-data.html).

The following previously published data sets were used
    1. Gareta D
    2. Dube S
    3. Herbst K
    (2020) AHRI.PIP.Men's General Health.All.Release 2020-07
    AHRI Data Repository, doi: 10.23664/AHRI.PIP.RD04-99.MGH.ALL.202007.
    1. Gareta D
    2. Dube S
    3. Herbst K
    (2020) AHRI.PIP.Women's General Health.All.Release 2020-07
    AHRI Data Repository, doi: 10.23664/AHRI.PIP.RD03-99.WGH.ALL.202007.

Article and author information

Author details

  1. Timothy M Wolock

    Department of Mathematics, Imperial College London, London, United Kingdom
    For correspondence
    t.wolock18@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5898-1014
  2. Seth Flaxman

    Department of Mathematics, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2477-4217
  3. Kathryn A Risher

    Faculty of Medicine, School of Public Health, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9588-1693
  4. Tawanda Dadirai

    Manicaland Centre for Public Health Research, Biomedical Research and Training Institute, Harare, Zimbabwe
    Competing interests
    The authors declare that no competing interests exist.
  5. Simon Gregson

    Faculty of Medicine, School of Public Health, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Jeff Eaton

    Faculty of Medicine, School of Public Health, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Funding

Bill and Melinda Gates Foundation (OPP1190661,OPP1164897)

  • Kathryn A Risher
  • Simon Gregson
  • Jeff Eaton

Medical Research Council (MR/R015600/1)

  • Simon Gregson
  • Jeff Eaton

National Institute of Allergy and Infectious Diseases (R01AI136664)

  • Jeff Eaton

Engineering and Physical Sciences Research Council (EP/V002910/1)

  • Seth Flaxman

Imperial College London (President's PhD Scholarship)

  • Timothy M Wolock

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: We conducted secondary analysis of previously collected anonymised data in compliance with each data producer's use requirements. Procedures and questionnaires for standard DHS surveys have been reviewed and approved by the ICF International Institutional Review Board (IRB). The Manicaland study was approved by the Medical Research Council of Zimbabwe and the Imperial College Research Ethics Committee. The Africa Centre Demographic Information System PIP surveillance study was approved by Biomedical Research Ethics Committee, University of KwaZulu-Natal, South Africa (BE290/16).

Copyright

© 2021, Wolock et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 574
    views
  • 54
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Timothy M Wolock
  2. Seth Flaxman
  3. Kathryn A Risher
  4. Tawanda Dadirai
  5. Simon Gregson
  6. Jeff Eaton
(2021)
Evaluating distributional regression strategies for modelling self-reported sexual age-mixing
eLife 10:e68318.
https://doi.org/10.7554/eLife.68318

Share this article

https://doi.org/10.7554/eLife.68318

Further reading

    1. Epidemiology and Global Health
    Riccardo Spott, Mathias W Pletz ... Christian Brandt
    Research Article

    Given the rapid cross-country spread of SARS-CoV-2 and the resulting difficulty in tracking lineage spread, we investigated the potential of combining mobile service data and fine-granular metadata (such as postal codes and genomic data) to advance integrated genomic surveillance of the pandemic in the federal state of Thuringia, Germany. We sequenced over 6500 SARS-CoV-2 Alpha genomes (B.1.1.7) across 7 months within Thuringia while collecting patients’ isolation dates and postal codes. Our dataset is complemented by over 66,000 publicly available German Alpha genomes and mobile service data for Thuringia. We identified the existence and spread of nine persistent mutation variants within the Alpha lineage, seven of which formed separate phylogenetic clusters with different spreading patterns in Thuringia. The remaining two are subclusters. Mobile service data can indicate these clusters’ spread and highlight a potential sampling bias, especially of low-prevalence variants. Thereby, mobile service data can be used either retrospectively to assess surveillance coverage and efficiency from already collected data or to actively guide part of a surveillance sampling process to districts where these variants are expected to emerge. The latter concept was successfully implemented as a proof-of-concept for a mobility-guided sampling strategy in response to the surveillance of Omicron sublineage BQ.1.1. The combination of mobile service data and SARS-CoV-2 surveillance by genome sequencing is a valuable tool for more targeted and responsive surveillance.

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Felix Lankester, Tito J Kibona ... Sarah Cleaveland
    Research Article

    Lack of data on the aetiology of livestock diseases constrains effective interventions to improve livelihoods, food security and public health. Livestock abortion is an important disease syndrome affecting productivity and public health. Several pathogens are associated with livestock abortions but across Africa surveillance data rarely include information from abortions, little is known about aetiology and impacts, and data are not available to inform interventions. This paper describes outcomes from a surveillance platform established in Tanzania spanning pastoral, agropastoral and smallholder systems to investigate causes and impacts of livestock abortion. Abortion events were reported by farmers to livestock field officers (LFO) and on to investigation teams. Events were included if the research team or LFO could attend within 72 hr. If so, samples and questionnaire data were collected to investigate (a) determinants of attribution; (b) patterns of events, including species and breed, previous abortion history, and seasonality; (c) determinants of reporting, investigation and attribution; (d) cases involving zoonotic pathogens. Between 2017–2019, 215 events in cattle (n=71), sheep (n=44), and goats (n=100) were investigated. Attribution, achieved for 19.5% of cases, was significantly affected by delays in obtaining samples. Histopathology proved less useful than PCR due to rapid deterioration of samples. Vaginal swabs provided practical and sensitive material for pathogen detection. Livestock abortion surveillance, even at a small scale, can generate valuable information on causes of disease outbreaks, reproductive losses and can identify pathogens not easily captured through other forms of livestock disease surveillance. This study demonstrated the feasibility of establishing a surveillance system, achieved through engagement of community-based field officers, establishment of practical sample collection and application of molecular diagnostic platforms.