HIF1α is required for NK cell metabolic adaptation during virus infection

  1. Francisco Victorino  Is a corresponding author
  2. Tarin Bigley
  3. Eugene Park
  4. Cong-Hui Yao
  5. Jeanne Benoit
  6. Liping Yang
  7. Sytse J Piersma
  8. Elvin J Lauron
  9. Rebecca M Davidson
  10. Gary Patti
  11. Wayne M Yokoyama  Is a corresponding author
  1. Washington University School of Medicine, United States
  2. Washington University, United States
  3. National Jewish Health, United States
  4. University of Iowa, United States

Abstract

Natural killer (NK) cells are essential for early protection against virus infection, and must metabolically adapt to the energy demands of activation. Here, we found upregulation of the metabolic adaptor hypoxia inducible factor-1α (HIF-1α) is a feature of mouse NK cells during murine cytomegalovirus (MCMV) infection in vivo. HIF-1 α -deficient NK cells failed to control viral load, causing increased morbidity. No defects were found in effector functions of HIF-1α KO NK cells however, their numbers were significantly reduced. Loss of HIF-1 α did not affect NK cell proliferation during in vivo infection and in vitro cytokine stimulation. Instead, we found HIF-1α -deficient NK cells showed increased expression of the pro-apoptotic protein Bim and glucose metabolism was impaired during cytokine stimulation in vitro. Similarly, during MCMV infection HIF-1α -deficient NK cells upregulated Bim and had increased caspase activity. Thus, NK cells require HIF-1α-dependent metabolic functions to repress Bim expression and sustain cell numbers for an optimal virus response.

Data availability

Data generated or analyzed during this study has been deposited to the Dryad Digital Depository, available here: doi:10.5061/dryad.n5tb2rbvm

The following data sets were generated

Article and author information

Author details

  1. Francisco Victorino

    Rheumatology Division, Washington University School of Medicine, St. Louis, United States
    For correspondence
    ramirezvictorino@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7626-3219
  2. Tarin Bigley

    Rheumatology Division, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Eugene Park

    Rheumatology Division, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2617-7571
  4. Cong-Hui Yao

    Department of Chemistry, Department of Medicine, Washington University, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jeanne Benoit

    Department of Biomedical Research, Center for Genes, Environment and Health, National Jewish Health, Denver, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Liping Yang

    Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Sytse J Piersma

    Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5379-3556
  8. Elvin J Lauron

    Rheumatology Division, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Rebecca M Davidson

    Department of Biomedical Research, Center for Genes, Environment and Health, National Jewish Health, Denver, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Gary Patti

    FOEDRC Metabolomics Core Facility, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3748-6193
  11. Wayne M Yokoyama

    Department of Medicine, Washington University School of Medicine, St Louis, United States
    For correspondence
    yokoyama@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0566-7264

Funding

National Institute of Environmental Health Sciences (R35ES028365)

  • Gary Patti

National Institute of Allergy and Infectious Diseases (R01-AI131680)

  • Wayne M Yokoyama

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#20180293) of the University of Washington in St. Louis School of Medicine.

Copyright

© 2021, Victorino et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,174
    views
  • 336
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Francisco Victorino
  2. Tarin Bigley
  3. Eugene Park
  4. Cong-Hui Yao
  5. Jeanne Benoit
  6. Liping Yang
  7. Sytse J Piersma
  8. Elvin J Lauron
  9. Rebecca M Davidson
  10. Gary Patti
  11. Wayne M Yokoyama
(2021)
HIF1α is required for NK cell metabolic adaptation during virus infection
eLife 10:e68484.
https://doi.org/10.7554/eLife.68484

Share this article

https://doi.org/10.7554/eLife.68484

Further reading

    1. Immunology and Inflammation
    2. Structural Biology and Molecular Biophysics
    Ana Cristina Chang-Gonzalez, Aoi Akitsu ... Wonmuk Hwang
    Research Advance

    Increasing evidence suggests that mechanical load on the αβ T-cell receptor (TCR) is crucial for recognizing the antigenic peptide-bound major histocompatibility complex (pMHC) molecule. Our recent all-atom molecular dynamics (MD) simulations revealed that the inter-domain motion of the TCR is responsible for the load-induced catch bond behavior of the TCR-pMHC complex and peptide discrimination (Chang-Gonzalez et al., 2024). To further examine the generality of the mechanism, we perform all-atom MD simulations of the B7 TCR under different conditions for comparison with our previous simulations of the A6 TCR. The two TCRs recognize the same pMHC and have similar interfaces with pMHC in crystal structures. We find that the B7 TCR-pMHC interface stabilizes under ∼15 pN load using a conserved dynamic allostery mechanism that involves the asymmetric motion of the TCR chassis. However, despite forming comparable contacts with pMHC as A6 in the crystal structure, B7 has fewer high-occupancy contacts with pMHC and exhibits higher mechanical compliance during the simulation. These results indicate that the dynamic allostery common to the TCRαβ chassis can amplify slight differences in interfacial contacts into distinctive mechanical responses and nuanced biological outcomes.

    1. Immunology and Inflammation
    2. Structural Biology and Molecular Biophysics
    Colleen A Maillie, Kiana Golden ... Marco Mravic
    Research Article

    A potent class of HIV-1 broadly neutralizing antibodies (bnAbs) targets the envelope glycoprotein’s membrane proximal exposed region (MPER) through a proposed mechanism where hypervariable loops embed into lipid bilayers and engage headgroup moieties alongside the epitope. We address the feasibility and determinant molecular features of this mechanism using multi-scale modeling. All-atom simulations of 4E10, PGZL1, 10E8, and LN01 docked onto HIV-like membranes consistently form phospholipid complexes at key complementarity-determining region loop sites, solidifying that stable and specific lipid interactions anchor bnAbs to membrane surfaces. Ancillary protein-lipid contacts reveal surprising contributions from antibody framework regions. Coarse-grained simulations effectively capture antibodies embedding into membranes. Simulations estimating protein-membrane interaction strength for PGZL1 variants along an inferred maturation pathway show bilayer affinity is evolved and correlates with neutralization potency. The modeling demonstrated here uncovers insights into lipid participation in antibodies’ recognition of membrane proteins and highlights antibody features to prioritize in vaccine design.