HIF1α is required for NK cell metabolic adaptation during virus infection

  1. Francisco Victorino  Is a corresponding author
  2. Tarin Bigley
  3. Eugene Park
  4. Cong-Hui Yao
  5. Jeanne Benoit
  6. Liping Yang
  7. Sytse J Piersma
  8. Elvin J Lauron
  9. Rebecca M Davidson
  10. Gary Patti
  11. Wayne M Yokoyama  Is a corresponding author
  1. Washington University School of Medicine, United States
  2. Washington University, United States
  3. National Jewish Health, United States
  4. University of Iowa, United States

Abstract

Natural killer (NK) cells are essential for early protection against virus infection, and must metabolically adapt to the energy demands of activation. Here, we found upregulation of the metabolic adaptor hypoxia inducible factor-1α (HIF-1α) is a feature of mouse NK cells during murine cytomegalovirus (MCMV) infection in vivo. HIF-1 α -deficient NK cells failed to control viral load, causing increased morbidity. No defects were found in effector functions of HIF-1α KO NK cells however, their numbers were significantly reduced. Loss of HIF-1 α did not affect NK cell proliferation during in vivo infection and in vitro cytokine stimulation. Instead, we found HIF-1α -deficient NK cells showed increased expression of the pro-apoptotic protein Bim and glucose metabolism was impaired during cytokine stimulation in vitro. Similarly, during MCMV infection HIF-1α -deficient NK cells upregulated Bim and had increased caspase activity. Thus, NK cells require HIF-1α-dependent metabolic functions to repress Bim expression and sustain cell numbers for an optimal virus response.

Data availability

Data generated or analyzed during this study has been deposited to the Dryad Digital Depository, available here: doi:10.5061/dryad.n5tb2rbvm

The following data sets were generated

Article and author information

Author details

  1. Francisco Victorino

    Rheumatology Division, Washington University School of Medicine, St. Louis, United States
    For correspondence
    ramirezvictorino@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7626-3219
  2. Tarin Bigley

    Rheumatology Division, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Eugene Park

    Rheumatology Division, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2617-7571
  4. Cong-Hui Yao

    Department of Chemistry, Department of Medicine, Washington University, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jeanne Benoit

    Department of Biomedical Research, Center for Genes, Environment and Health, National Jewish Health, Denver, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Liping Yang

    Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Sytse J Piersma

    Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5379-3556
  8. Elvin J Lauron

    Rheumatology Division, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Rebecca M Davidson

    Department of Biomedical Research, Center for Genes, Environment and Health, National Jewish Health, Denver, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Gary Patti

    FOEDRC Metabolomics Core Facility, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3748-6193
  11. Wayne M Yokoyama

    Department of Medicine, Washington University School of Medicine, St Louis, United States
    For correspondence
    yokoyama@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0566-7264

Funding

National Institute of Environmental Health Sciences (R35ES028365)

  • Gary Patti

National Institute of Allergy and Infectious Diseases (R01-AI131680)

  • Wayne M Yokoyama

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#20180293) of the University of Washington in St. Louis School of Medicine.

Copyright

© 2021, Victorino et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,159
    views
  • 334
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Francisco Victorino
  2. Tarin Bigley
  3. Eugene Park
  4. Cong-Hui Yao
  5. Jeanne Benoit
  6. Liping Yang
  7. Sytse J Piersma
  8. Elvin J Lauron
  9. Rebecca M Davidson
  10. Gary Patti
  11. Wayne M Yokoyama
(2021)
HIF1α is required for NK cell metabolic adaptation during virus infection
eLife 10:e68484.
https://doi.org/10.7554/eLife.68484

Share this article

https://doi.org/10.7554/eLife.68484

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Benita Martin-Castaño, Patricia Diez-Echave ... Julio Galvez
    Research Article

    Coronavirus disease 2019 (COVID-19) is a respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that displays great variability in clinical phenotype. Many factors have been described to be correlated with its severity, and microbiota could play a key role in the infection, progression, and outcome of the disease. SARS-CoV-2 infection has been associated with nasopharyngeal and gut dysbiosis and higher abundance of opportunistic pathogens. To identify new prognostic markers for the disease, a multicentre prospective observational cohort study was carried out in COVID-19 patients divided into three cohorts based on symptomatology: mild (n = 24), moderate (n = 51), and severe/critical (n = 31). Faecal and nasopharyngeal samples were taken, and the microbiota was analysed. Linear discriminant analysis identified Mycoplasma salivarium, Prevotella dentalis, and Haemophilus parainfluenzae as biomarkers of severe COVID-19 in nasopharyngeal microbiota, while Prevotella bivia and Prevotella timonensis were defined in faecal microbiota. Additionally, a connection between faecal and nasopharyngeal microbiota was identified, with a significant ratio between P. timonensis (faeces) and P. dentalis and M. salivarium (nasopharyngeal) abundances found in critically ill patients. This ratio could serve as a novel prognostic tool for identifying severe COVID-19 cases.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Yan Zhao, Hanshuo Zhu ... Li Sun
    Research Article

    Type III secretion system (T3SS) is a virulence apparatus existing in many bacterial pathogens. Structurally, T3SS consists of the base, needle, tip, and translocon. The NLRC4 inflammasome is the major receptor for T3SS needle and basal rod proteins. Whether other T3SS components are recognized by NLRC4 is unclear. In this study, using Edwardsiella tarda as a model intracellular pathogen, we examined T3SS−inflammasome interaction and its effect on cell death. E. tarda induced pyroptosis in a manner that required the bacterial translocon and the host inflammasome proteins of NLRC4, NLRP3, ASC, and caspase 1/4. The translocon protein EseB triggered NLRC4/NAIP-mediated pyroptosis by binding NAIP via its C-terminal region, particularly the terminal 6 residues (T6R). EseB homologs exist widely in T3SS-positive bacteria and share high identities in T6R. Like E. tarda EseB, all of the representatives of the EseB homologs exhibited T6R-dependent NLRC4 activation ability. Together these results revealed the function and molecular mechanism of EseB to induce host cell pyroptosis and suggested a highly conserved inflammasome-activation mechanism of T3SS translocon in bacterial pathogens.