Heparin-binding motif mutations of human diamine oxidase allow the development of a first-in-class histamine-degrading biopharmaceutical

  1. Elisabeth Gludovacz
  2. Kornelia Schuetzenberger
  3. Marlene Resch
  4. Katharina Tillmann
  5. Karin Petroczi
  6. Markus Schosserer
  7. Sigrid Vondra
  8. Serhii Vakal
  9. Gerald Klanert
  10. Jürgen Pollheimer
  11. Tiina A Salminen
  12. Bernd Jilma
  13. Nicole Borth
  14. Thomas Boehm  Is a corresponding author
  1. Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
  2. Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
  3. Department of Clinical Pharmacology, Medical University of Vienna, Austria
  4. Center for Biomedical Research, Medical University of Vienna, Austria
  5. University of Natural Resources and Life Sciences, Vienna, Austria
  6. Department of Obstetrics and Gynecology, Medical University of Vienna, Austria
  7. Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Finland
  8. Medical University of Vienna, Austria
  9. Department of Biotechnology, University of Natural Resources and Life Sciences, Austria

Abstract

Background: Excessive plasma histamine concentrations cause symptoms in mast cell activation syndrome, mastocytosis or anaphylaxis. Anti-histamines are often insufficiently efficacious. Human diamine oxidase (hDAO) can rapidly degrade histamine and therefore represents a promising new treatment strategy for conditions with pathological histamine concentrations.

Results: Recombinant hDAO is rapidly cleared from the circulation in rats and mice. After replacement of positively charged amino acids of the heparin-binding motif with polar serine or threonine residues binding to heparin and heparan sulfate was strongly reduced. The double mutant rhDAO-R568S/R571T showed minimal cellular uptake. The short α-distribution half-life of the wildtype protein was eliminated and the clearance was significantly reduced in rodents.

Conclusions: The successful decrease in plasma clearance of rhDAO by mutations of the heparin-binding motif with unchanged histamine-degrading activity represents the first step towards the development of rhDAO as a first-in-class biopharmaceutical to effectively treat diseases characterized by excessive histamine concentrations in plasma and tissues.

Funding: Austrian Science Fund (FWF) Hertha Firnberg program grant T1135 (EG); ADD funding Sigrid Juselius Foundation, Medicinska Understödsförening Liv och Hälsa rft (TAS and SeV).

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2 and 3.

Article and author information

Author details

  1. Elisabeth Gludovacz

    Department of Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
    Competing interests
    Elisabeth Gludovacz, is named as an inventor with The Medical University of Vienna and the University of Natural Resources and Life Sciences of a patent describing the rhDAO heparin-binding motif mutants presented herein (patent pending WO2020169577A1).
  2. Kornelia Schuetzenberger

    Center for Medical Physics and Biomedical Engineering, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
    Competing interests
    No competing interests declared.
  3. Marlene Resch

    Department of Clinical Pharmacology, Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
    Competing interests
    No competing interests declared.
  4. Katharina Tillmann

    Center for Biomedical Research, Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
    Competing interests
    No competing interests declared.
  5. Karin Petroczi

    Department of Clinical Pharmacology, Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
    Competing interests
    No competing interests declared.
  6. Markus Schosserer

    Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2025-0739
  7. Sigrid Vondra

    Department of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
    Competing interests
    No competing interests declared.
  8. Serhii Vakal

    Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
    Competing interests
    No competing interests declared.
  9. Gerald Klanert

    Department of Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
    Competing interests
    No competing interests declared.
  10. Jürgen Pollheimer

    Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8440-5221
  11. Tiina A Salminen

    Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
    Competing interests
    No competing interests declared.
  12. Bernd Jilma

    Department of Clinical Pharmacology, Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
    Competing interests
    Bernd Jilma, is named as an inventor with The Medical University of Vienna and the University of Natural Resources and Life Sciences of a patent describing the rhDAO heparin-binding motif mutants presented herein (patent pending WO2020169577A1)..
  13. Nicole Borth

    Department of Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
    Competing interests
    Nicole Borth, is named as an inventor with The Medical University of Vienna and the University of Natural Resources and Life Sciences of a patent describing the rhDAO heparin-binding motif mutants presented herein (patent pending WO2020169577A1)..
  14. Thomas Boehm

    Department of Clinical Pharmacology, Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
    For correspondence
    thomas.boehm@meduniwien.ac.at
    Competing interests
    Thomas Boehm, is named as an inventor with The Medical University of Vienna and the University of Natural Resources and Life Sciences of a patent describing the rhDAO heparin-binding motif mutants presented herein (patent pending WO2020169577A1)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8294-0797

Funding

Austrian Science Fund (T1135)

  • Elisabeth Gludovacz

Sigrid Juséliuksen Säätiö

  • Serhii Vakal
  • Tiina A Salminen

Medicinska Understödsföreningen Liv och Hälsa

  • Serhii Vakal
  • Tiina A Salminen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The experimental protocols for the treatment of rats and mice were approved by the local Animal Welfare Committee and the Federal Ministry of Science, Research and Economy (GZ 66.009/0152-WF/V/3b/2014) and conducted in full accordance with the ARRIVE guidelines.

Copyright

© 2021, Gludovacz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 777
    views
  • 130
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elisabeth Gludovacz
  2. Kornelia Schuetzenberger
  3. Marlene Resch
  4. Katharina Tillmann
  5. Karin Petroczi
  6. Markus Schosserer
  7. Sigrid Vondra
  8. Serhii Vakal
  9. Gerald Klanert
  10. Jürgen Pollheimer
  11. Tiina A Salminen
  12. Bernd Jilma
  13. Nicole Borth
  14. Thomas Boehm
(2021)
Heparin-binding motif mutations of human diamine oxidase allow the development of a first-in-class histamine-degrading biopharmaceutical
eLife 10:e68542.
https://doi.org/10.7554/eLife.68542

Share this article

https://doi.org/10.7554/eLife.68542

Further reading

    1. Cell Biology
    2. Medicine
    Judith Hüttemeister, Franziska Rudolph ... Michael Gotthardt
    Research Article

    The giant striated muscle protein titin integrates into the developing sarcomere to form a stable myofilament system that is extended as myocytes fuse. The logistics underlying myofilament assembly and disassembly have started to emerge with the possibility to follow labeled sarcomere components. Here, we generated the mCherry knock-in at titin’s Z-disk to study skeletal muscle development and remodeling. We find titin’s integration into the sarcomere tightly regulated and its unexpected mobility facilitating a homogeneous distribution of titin after cell fusion – an integral part of syncytium formation and maturation of skeletal muscle. In adult mCherry-titin mice, treatment of muscle injury by implantation of titin-eGFP myoblasts reveals how myocytes integrate, fuse, and contribute to the continuous myofilament system across cell boundaries. Unlike in immature primary cells, titin proteins are retained at the proximal nucleus and do not diffuse across the whole syncytium with implications for future cell-based therapies of skeletal muscle disease.

    1. Medicine
    2. Neuroscience
    Chi Zhang, Qian Huang ... Yun Guan
    Research Article

    Pain after surgery causes significant suffering. Opioid analgesics cause severe side effects and accidental death. Therefore, there is an urgent need to develop non-opioid therapies for managing post-surgical pain. Local application of Clarix Flo (FLO), a human amniotic membrane (AM) product, attenuated established post-surgical pain hypersensitivity without exhibiting known side effects of opioid use in mice. This effect was achieved through direct inhibition of nociceptive dorsal root ganglion (DRG) neurons via CD44-dependent pathways. We further purified the major matrix component, the heavy chain-hyaluronic acid/pentraxin 3 (HC-HA/PTX3) from human AM that has greater purity and water solubility than FLO. HC-HA/PTX3 replicated FLO-induced neuronal and pain inhibition. Mechanistically, HC-HA/PTX3-induced cytoskeleton rearrangements to inhibit sodium current and high-voltage activated calcium current on nociceptive DRG neurons, suggesting it is a key bioactive component mediating pain relief. Collectively, our findings highlight the potential of naturally derived biologics from human birth tissues as an effective non-opioid treatment for post-surgical pain. Moreover, we unravel the underlying neuronal mechanisms of pain inhibition induced by FLO and HC-HA/PTX3.