Heparin-binding motif mutations of human diamine oxidase allow the development of a first-in-class histamine-degrading biopharmaceutical

  1. Elisabeth Gludovacz
  2. Kornelia Schuetzenberger
  3. Marlene Resch
  4. Katharina Tillmann
  5. Karin Petroczi
  6. Markus Schosserer
  7. Sigrid Vondra
  8. Serhii Vakal
  9. Gerald Klanert
  10. Jürgen Pollheimer
  11. Tiina A Salminen
  12. Bernd Jilma
  13. Nicole Borth
  14. Thomas Boehm  Is a corresponding author
  1. Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
  2. Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
  3. Department of Clinical Pharmacology, Medical University of Vienna, Austria
  4. Center for Biomedical Research, Medical University of Vienna, Austria
  5. University of Natural Resources and Life Sciences, Vienna, Austria
  6. Department of Obstetrics and Gynecology, Medical University of Vienna, Austria
  7. Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Finland
  8. Medical University of Vienna, Austria
  9. Department of Biotechnology, University of Natural Resources and Life Sciences, Austria

Abstract

Background: Excessive plasma histamine concentrations cause symptoms in mast cell activation syndrome, mastocytosis or anaphylaxis. Anti-histamines are often insufficiently efficacious. Human diamine oxidase (hDAO) can rapidly degrade histamine and therefore represents a promising new treatment strategy for conditions with pathological histamine concentrations.

Results: Recombinant hDAO is rapidly cleared from the circulation in rats and mice. After replacement of positively charged amino acids of the heparin-binding motif with polar serine or threonine residues binding to heparin and heparan sulfate was strongly reduced. The double mutant rhDAO-R568S/R571T showed minimal cellular uptake. The short α-distribution half-life of the wildtype protein was eliminated and the clearance was significantly reduced in rodents.

Conclusions: The successful decrease in plasma clearance of rhDAO by mutations of the heparin-binding motif with unchanged histamine-degrading activity represents the first step towards the development of rhDAO as a first-in-class biopharmaceutical to effectively treat diseases characterized by excessive histamine concentrations in plasma and tissues.

Funding: Austrian Science Fund (FWF) Hertha Firnberg program grant T1135 (EG); ADD funding Sigrid Juselius Foundation, Medicinska Understödsförening Liv och Hälsa rft (TAS and SeV).

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2 and 3.

Article and author information

Author details

  1. Elisabeth Gludovacz

    Department of Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
    Competing interests
    Elisabeth Gludovacz, is named as an inventor with The Medical University of Vienna and the University of Natural Resources and Life Sciences of a patent describing the rhDAO heparin-binding motif mutants presented herein (patent pending WO2020169577A1).
  2. Kornelia Schuetzenberger

    Center for Medical Physics and Biomedical Engineering, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
    Competing interests
    No competing interests declared.
  3. Marlene Resch

    Department of Clinical Pharmacology, Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
    Competing interests
    No competing interests declared.
  4. Katharina Tillmann

    Center for Biomedical Research, Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
    Competing interests
    No competing interests declared.
  5. Karin Petroczi

    Department of Clinical Pharmacology, Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
    Competing interests
    No competing interests declared.
  6. Markus Schosserer

    Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2025-0739
  7. Sigrid Vondra

    Department of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
    Competing interests
    No competing interests declared.
  8. Serhii Vakal

    Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
    Competing interests
    No competing interests declared.
  9. Gerald Klanert

    Department of Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
    Competing interests
    No competing interests declared.
  10. Jürgen Pollheimer

    Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8440-5221
  11. Tiina A Salminen

    Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
    Competing interests
    No competing interests declared.
  12. Bernd Jilma

    Department of Clinical Pharmacology, Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
    Competing interests
    Bernd Jilma, is named as an inventor with The Medical University of Vienna and the University of Natural Resources and Life Sciences of a patent describing the rhDAO heparin-binding motif mutants presented herein (patent pending WO2020169577A1)..
  13. Nicole Borth

    Department of Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
    Competing interests
    Nicole Borth, is named as an inventor with The Medical University of Vienna and the University of Natural Resources and Life Sciences of a patent describing the rhDAO heparin-binding motif mutants presented herein (patent pending WO2020169577A1)..
  14. Thomas Boehm

    Department of Clinical Pharmacology, Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
    For correspondence
    thomas.boehm@meduniwien.ac.at
    Competing interests
    Thomas Boehm, is named as an inventor with The Medical University of Vienna and the University of Natural Resources and Life Sciences of a patent describing the rhDAO heparin-binding motif mutants presented herein (patent pending WO2020169577A1)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8294-0797

Funding

Austrian Science Fund (T1135)

  • Elisabeth Gludovacz

Sigrid Juséliuksen Säätiö

  • Serhii Vakal
  • Tiina A Salminen

Medicinska Understödsföreningen Liv och Hälsa

  • Serhii Vakal
  • Tiina A Salminen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The experimental protocols for the treatment of rats and mice were approved by the local Animal Welfare Committee and the Federal Ministry of Science, Research and Economy (GZ 66.009/0152-WF/V/3b/2014) and conducted in full accordance with the ARRIVE guidelines.

Reviewing Editor

  1. Arduino A Mangoni, Flinders Medical Centre, Australia

Version history

  1. Received: March 18, 2021
  2. Accepted: September 1, 2021
  3. Accepted Manuscript published: September 3, 2021 (version 1)
  4. Version of Record published: September 16, 2021 (version 2)
  5. Version of Record updated: September 29, 2021 (version 3)

Copyright

© 2021, Gludovacz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 685
    Page views
  • 108
    Downloads
  • 7
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elisabeth Gludovacz
  2. Kornelia Schuetzenberger
  3. Marlene Resch
  4. Katharina Tillmann
  5. Karin Petroczi
  6. Markus Schosserer
  7. Sigrid Vondra
  8. Serhii Vakal
  9. Gerald Klanert
  10. Jürgen Pollheimer
  11. Tiina A Salminen
  12. Bernd Jilma
  13. Nicole Borth
  14. Thomas Boehm
(2021)
Heparin-binding motif mutations of human diamine oxidase allow the development of a first-in-class histamine-degrading biopharmaceutical
eLife 10:e68542.
https://doi.org/10.7554/eLife.68542

Share this article

https://doi.org/10.7554/eLife.68542

Further reading

    1. Medicine
    Shengjie Li, Jun Ren ... Wenjun Cao
    Research Article

    Background:

    Primary angle closure glaucoma (PACG) is the leading cause of irreversible blindness in Asia, and no reliable, effective diagnostic, and predictive biomarkers are used in clinical routines. A growing body of evidence shows metabolic alterations in patients with glaucoma. We aimed to develop and validate potential metabolite biomarkers to diagnose and predict the visual field progression of PACG.

    Methods:

    Here, we used a five-phase (discovery phase, validation phase 1, validation phase 2, supplementary phase, and cohort phase) multicenter (EENT hospital, Shanghai Xuhui Central Hospital), cross-sectional, prospective cohort study designed to perform widely targeted metabolomics and chemiluminescence immunoassay to determine candidate biomarkers. Five machine learning (random forest, support vector machine, lasso, K-nearest neighbor, and GaussianNaive Bayes [NB]) approaches were used to identify an optimal algorithm. The discrimination ability was evaluated using the area under the receiver operating characteristic curve (AUC). Calibration was assessed by Hosmer-Lemeshow tests and calibration plots.

    Results:

    Studied serum samples were collected from 616 participants, and 1464 metabolites were identified. Machine learning algorithm determines that androstenedione exhibited excellent discrimination and acceptable calibration in discriminating PACG across the discovery phase (discovery set 1, AUCs=1.0 [95% CI, 1.00–1.00]; discovery set 2, AUCs = 0.85 [95% CI, 0.80–0.90]) and validation phases (internal validation, AUCs = 0.86 [95% CI, 0.81–0.91]; external validation, AUCs = 0.87 [95% CI, 0.80–0.95]). Androstenedione also exhibited a higher AUC (0.92–0.98) to discriminate the severity of PACG. In the supplemental phase, serum androstenedione levels were consistent with those in aqueous humor (r=0.82, p=0.038) and significantly (p=0.021) decreased after treatment. Further, cohort phase demonstrates that higher baseline androstenedione levels (hazard ratio = 2.71 [95% CI: 1.199–6.104], p=0.017) were associated with faster visual field progression.

    Conclusions:

    Our study identifies serum androstenedione as a potential biomarker for diagnosing PACG and indicating visual field progression.

    Funding:

    This work was supported by Youth Medical Talents – Clinical Laboratory Practitioner Program (2022-65), the National Natural Science Foundation of China (82302582), Shanghai Municipal Health Commission Project (20224Y0317), and Higher Education Industry-Academic-Research Innovation Fund of China (2023JQ006).

    1. Medicine
    Swee Sen Kwek, Eng Eong Ooi
    Insight

    Understanding the kinetics of dengue viruses in the bloodstream can provide insights into the clinical outcomes of the disease.