A bidirectional corticoamygdala circuit for the encoding and retrieval of detailed reward memories

  1. Ana C Sias
  2. Ashleigh K Morse
  3. Sherry Wang
  4. Venuz Y Greenfield
  5. Caitlin M Goodpaster
  6. Tyler M Wrenn
  7. Andrew Wikenheiser
  8. Sandra M Holley
  9. Carlos Cepeda
  10. Michael S Levine
  11. Kate M Wassum  Is a corresponding author
  1. University of California, Los Angeles, United States
  2. Matilda Centre, University of Sydney, Australia
  3. UCLA, United States

Abstract

Adaptive reward-related decision making often requires accurate and detailed representation of potential available rewards. Environmental reward-predictive stimuli can facilitate these representations, allowing one to infer which specific rewards might be available and choose accordingly. This process relies on encoded relationships between the cues and the sensory-specific details of the reward they predict. Here we interrogated the function of the basolateral amygdala (BLA) and its interaction with the lateral orbitofrontal cortex (lOFC) in the ability to learn such stimulus-outcome associations and use these memories to guide decision making. Using optical recording and inhibition approaches, Pavlovian cue-reward conditioning, and the outcome-selective Pavlovian-to-instrumental transfer (PIT) test in male rats, we found that the BLA is robustly activated at the time of stimulus-outcome learning and that this activity is necessary for sensory-specific stimulus-outcome memories to be encoded, so they can subsequently influence reward choices. Direct input from the lOFC was found to support the BLA in this function. Based on prior work, activity in BLA projections back to the lOFC was known to support the use of stimulus-outcome memories to influence decision making. By multiplexing optogenetic and chemogenetic inhibition we performed a serial circuit disconnection and found that the lOFCàBLA and BLAàlOFC pathways form a functional circuit regulating the encoding (lOFCàBLA) and subsequent use (BLAàlOFC) of the stimulus-dependent, sensory-specific reward memories that are critical for adaptive, appetitive decision making.

Data availability

All data and code support the findings of this study are available from the corresponding author upon request and via Dryad (doi:10.5068/D1109S).

The following data sets were generated

Article and author information

Author details

  1. Ana C Sias

    Department of Psychology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  2. Ashleigh K Morse

    Faculty of Medicine and Health, Matilda Centre, University of Sydney, Darlington, Australia
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0773-5790
  3. Sherry Wang

    Department of Psychology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  4. Venuz Y Greenfield

    Department of Psychology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  5. Caitlin M Goodpaster

    Department of Psychology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2456-9010
  6. Tyler M Wrenn

    Department of Psychology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  7. Andrew Wikenheiser

    UCLA, Los Angeles, United States
    Competing interests
    No competing interests declared.
  8. Sandra M Holley

    Intellectual and Developmental Disabilities Research Center, Brain Research Institute, Semel Institute for Neuroscience, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  9. Carlos Cepeda

    UCLA, Los Angeles, United States
    Competing interests
    No competing interests declared.
  10. Michael S Levine

    Intellectual and Developmental Disabilities Research Center, Brain Research Institute, Semel Institute for Neuroscience, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  11. Kate M Wassum

    Department of Psychology, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    kwassum@ucla.edu
    Competing interests
    Kate M Wassum, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2635-7433

Funding

National Institutes of Health (DA035443)

  • Kate M Wassum

National Science Foundation

  • Ana C Sias

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were conducted in accordance with the NIH Guide for the Care and Use of Laboratory Animals and were approved by the UCLA Institutional Animal Care and Use Committee.

Copyright

© 2021, Sias et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,598
    views
  • 533
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ana C Sias
  2. Ashleigh K Morse
  3. Sherry Wang
  4. Venuz Y Greenfield
  5. Caitlin M Goodpaster
  6. Tyler M Wrenn
  7. Andrew Wikenheiser
  8. Sandra M Holley
  9. Carlos Cepeda
  10. Michael S Levine
  11. Kate M Wassum
(2021)
A bidirectional corticoamygdala circuit for the encoding and retrieval of detailed reward memories
eLife 10:e68617.
https://doi.org/10.7554/eLife.68617

Share this article

https://doi.org/10.7554/eLife.68617

Further reading

    1. Neuroscience
    Bhanu Shrestha, Jiun Sang ... Youngseok Lee
    Research Article

    Sour taste, which is elicited by low pH, may serve to help animals distinguish appetitive from potentially harmful food sources. In all species studied to date, the attractiveness of oral acids is contingent on concentration. Many carboxylic acids are attractive at ecologically relevant concentrations but become aversive beyond some maximal concentration. Recent work found that Drosophila ionotropic receptors IR25a and IR76b expressed by sweet-responsive gustatory receptor neurons (GRNs) in the labellum, a peripheral gustatory organ, mediate appetitive feeding behaviors toward dilute carboxylic acids. Here, we disclose the existence of pharyngeal sensors in Drosophila melanogaster that detect ingested carboxylic acids and are also involved in the appetitive responses to carboxylic acids. These pharyngeal sensors rely on IR51b, IR94a, and IR94h, together with IR25a and IR76b, to drive responses to carboxylic acids. We then demonstrate that optogenetic activation of either Ir94a+ or Ir94h+ GRNs promotes an appetitive feeding response, confirming their contributions to appetitive feeding behavior. Our discovery of internal pharyngeal sour taste receptors opens up new avenues for investigating the internal sensation of tastants in insects.

    1. Neuroscience
    Yiting Li, Wenqu Yin ... Baoming Li
    Research Article

    Time estimation is an essential prerequisite underlying various cognitive functions. Previous studies identified ‘sequential firing’ and ‘activity ramps’ as the primary neuron activity patterns in the medial frontal cortex (mPFC) that could convey information regarding time. However, the relationship between these patterns and the timing behavior has not been fully understood. In this study, we utilized in vivo calcium imaging of mPFC in rats performing a timing task. We observed cells that showed selective activation at trial start, end, or during the timing interval. By aligning long-term time-lapse datasets, we discovered that sequential patterns of time coding were stable over weeks, while cells coding for trial start or end showed constant dynamism. Furthermore, with a novel behavior design that allowed the animal to determine individual trial interval, we were able to demonstrate that real-time adjustment in the sequence procession speed closely tracked the trial-to-trial interval variations. And errors in the rats’ timing behavior can be primarily attributed to the premature ending of the time sequence. Together, our data suggest that sequential activity maybe a stable neural substrate that represents time under physiological conditions. Furthermore, our results imply the existence of a unique cell type in the mPFC that participates in the time-related sequences. Future characterization of this cell type could provide important insights in the neural mechanism of timing and related cognitive functions.