A bidirectional corticoamygdala circuit for the encoding and retrieval of detailed reward memories

  1. Ana C Sias
  2. Ashleigh K Morse
  3. Sherry Wang
  4. Venuz Y Greenfield
  5. Caitlin M Goodpaster
  6. Tyler M Wrenn
  7. Andrew Wikenheiser
  8. Sandra M Holley
  9. Carlos Cepeda
  10. Michael S Levine
  11. Kate M Wassum  Is a corresponding author
  1. University of California, Los Angeles, United States
  2. Matilda Centre, University of Sydney, Australia
  3. UCLA, United States

Abstract

Adaptive reward-related decision making often requires accurate and detailed representation of potential available rewards. Environmental reward-predictive stimuli can facilitate these representations, allowing one to infer which specific rewards might be available and choose accordingly. This process relies on encoded relationships between the cues and the sensory-specific details of the reward they predict. Here we interrogated the function of the basolateral amygdala (BLA) and its interaction with the lateral orbitofrontal cortex (lOFC) in the ability to learn such stimulus-outcome associations and use these memories to guide decision making. Using optical recording and inhibition approaches, Pavlovian cue-reward conditioning, and the outcome-selective Pavlovian-to-instrumental transfer (PIT) test in male rats, we found that the BLA is robustly activated at the time of stimulus-outcome learning and that this activity is necessary for sensory-specific stimulus-outcome memories to be encoded, so they can subsequently influence reward choices. Direct input from the lOFC was found to support the BLA in this function. Based on prior work, activity in BLA projections back to the lOFC was known to support the use of stimulus-outcome memories to influence decision making. By multiplexing optogenetic and chemogenetic inhibition we performed a serial circuit disconnection and found that the lOFCàBLA and BLAàlOFC pathways form a functional circuit regulating the encoding (lOFCàBLA) and subsequent use (BLAàlOFC) of the stimulus-dependent, sensory-specific reward memories that are critical for adaptive, appetitive decision making.

Data availability

All data and code support the findings of this study are available from the corresponding author upon request and via Dryad (doi:10.5068/D1109S).

The following data sets were generated

Article and author information

Author details

  1. Ana C Sias

    Department of Psychology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  2. Ashleigh K Morse

    Faculty of Medicine and Health, Matilda Centre, University of Sydney, Darlington, Australia
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0773-5790
  3. Sherry Wang

    Department of Psychology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  4. Venuz Y Greenfield

    Department of Psychology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  5. Caitlin M Goodpaster

    Department of Psychology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2456-9010
  6. Tyler M Wrenn

    Department of Psychology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  7. Andrew Wikenheiser

    UCLA, Los Angeles, United States
    Competing interests
    No competing interests declared.
  8. Sandra M Holley

    Intellectual and Developmental Disabilities Research Center, Brain Research Institute, Semel Institute for Neuroscience, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  9. Carlos Cepeda

    UCLA, Los Angeles, United States
    Competing interests
    No competing interests declared.
  10. Michael S Levine

    Intellectual and Developmental Disabilities Research Center, Brain Research Institute, Semel Institute for Neuroscience, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  11. Kate M Wassum

    Department of Psychology, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    kwassum@ucla.edu
    Competing interests
    Kate M Wassum, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2635-7433

Funding

National Institutes of Health (DA035443)

  • Kate M Wassum

National Science Foundation

  • Ana C Sias

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were conducted in accordance with the NIH Guide for the Care and Use of Laboratory Animals and were approved by the UCLA Institutional Animal Care and Use Committee.

Copyright

© 2021, Sias et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,640
    views
  • 536
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ana C Sias
  2. Ashleigh K Morse
  3. Sherry Wang
  4. Venuz Y Greenfield
  5. Caitlin M Goodpaster
  6. Tyler M Wrenn
  7. Andrew Wikenheiser
  8. Sandra M Holley
  9. Carlos Cepeda
  10. Michael S Levine
  11. Kate M Wassum
(2021)
A bidirectional corticoamygdala circuit for the encoding and retrieval of detailed reward memories
eLife 10:e68617.
https://doi.org/10.7554/eLife.68617

Share this article

https://doi.org/10.7554/eLife.68617

Further reading

    1. Neuroscience
    Li Shen, Shuo Li ... Yi Jiang
    Research Article

    When observing others’ behaviors, we continuously integrate their movements with the corresponding sounds to enhance perception and develop adaptive responses. However, how the human brain integrates these complex audiovisual cues based on their natural temporal correspondence remains unclear. Using electroencephalogram (EEG), we demonstrated that rhythmic cortical activity tracked the hierarchical rhythmic structures in audiovisually congruent human walking movements and footstep sounds. Remarkably, the cortical tracking effects exhibit distinct multisensory integration modes at two temporal scales: an additive mode in a lower-order, narrower temporal integration window (step cycle) and a super-additive enhancement in a higher-order, broader temporal window (gait cycle). Furthermore, while neural responses at the lower-order timescale reflect a domain-general audiovisual integration process, cortical tracking at the higher-order timescale is exclusively engaged in the integration of biological motion cues. In addition, only this higher-order, domain-specific cortical tracking effect correlates with individuals’ autistic traits, highlighting its potential as a neural marker for autism spectrum disorder. These findings unveil the multifaceted mechanism whereby rhythmic cortical activity supports the multisensory integration of human motion, shedding light on how neural coding of hierarchical temporal structures orchestrates the processing of complex, natural stimuli across multiple timescales.

    1. Neuroscience
    Mathias Guayasamin, Lewis R Depaauw-Holt ... Ciaran Murphy-Royal
    Research Article

    Early-life stress can have lifelong consequences, enhancing stress susceptibility and resulting in behavioural and cognitive deficits. While the effects of early-life stress on neuronal function have been well-described, we still know very little about the contribution of non-neuronal brain cells. Investigating the complex interactions between distinct brain cell types is critical to fully understand how cellular changes manifest as behavioural deficits following early-life stress. Here, using male and female mice we report that early-life stress induces anxiety-like behaviour and fear generalisation in an amygdala-dependent learning and memory task. These behavioural changes were associated with impaired synaptic plasticity, increased neural excitability, and astrocyte hypofunction. Genetic perturbation of amygdala astrocyte function by either reducing astrocyte calcium activity or reducing astrocyte network function was sufficient to replicate cellular, synaptic, and fear memory generalisation associated with early-life stress. Our data reveal a role of astrocytes in tuning emotionally salient memory and provide mechanistic links between early-life stress, astrocyte hypofunction, and behavioural deficits.