An inhibitory circuit from central amygdala to zona incerta drives pain-related behaviors in mice

  1. Sudhuman Singh
  2. Torri D Wilson
  3. Spring Valdivia
  4. Barbara Benowitz
  5. Sarah Chaudhry
  6. Jun Ma
  7. Anisha P Adke
  8. Omar Soler-Cedeno
  9. Daniela Velasquez
  10. Mario A Penzo
  11. Yarimar Carrasquillo  Is a corresponding author
  1. National Center for Complementary and Integrative Health, United States
  2. National Institute of Mental Health, United States

Abstract

Central amygdala neurons expressing protein kinase C-delta (CeA-PKCδ) are sensitized following nerve injury and promote pain-related responses in mice. The neural circuits underlying modulation of pain-related behaviors by CeA-PKCδ neurons, however, remain unknown. In this study, we identified a neural circuit that originates in CeA-PKCδ neurons and terminates in the ventral region of the zona incerta (ZI), a subthalamic structure previously linked to pain processing. Behavioral experiments show that chemogenetic inhibition of GABAergic ZI neurons induced bilateral hypersensitivity in uninjured mice and contralateral hypersensitivity after nerve injury. In contrast, chemogenetic activation of GABAergic ZI neurons reversed nerve injury-induced hypersensitivity. Optogenetic manipulations of CeA-PKCδ axonal terminals in the ZI further showed that inhibition of this pathway reduces nerve injury-induced hypersensitivity whereas activation of the pathway produces hypersensitivity in the uninjured paws. Altogether, our results identify a novel nociceptive inhibitory efferent pathway from CeA-PKCδ neurons to the ZI that bidirectionally modulates pain-related behaviors in mice.

Data availability

All data generated during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1-8 (including supplemental figures).

Article and author information

Author details

  1. Sudhuman Singh

    National Center for Complementary and Integrative Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Torri D Wilson

    National Center for Complementary and Integrative Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Spring Valdivia

    National Center for Complementary and Integrative Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Barbara Benowitz

    National Center for Complementary and Integrative Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sarah Chaudhry

    National Center for Complementary and Integrative Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jun Ma

    National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Anisha P Adke

    National Center for Complementary and Integrative Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5062-3319
  8. Omar Soler-Cedeno

    National Center for Complementary and Integrative Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5897-4156
  9. Daniela Velasquez

    National Center for Complementary and Integrative Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Mario A Penzo

    National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5368-1802
  11. Yarimar Carrasquillo

    National Center for Complementary and Integrative Health, Bethesda, United States
    For correspondence
    yarimar.carrasquillo@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0702-4975

Funding

National Center for Complementary and Integrative Health (Intramural Research Program)

  • Yarimar Carrasquillo

National Institute of Mental Health (Intramural Research Program)

  • Mario A Penzo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Matthew N Hill, University of Calgary, Canada

Ethics

Animal experimentation: Animal experimentation: All experiments were approved by the Animal Care and Use Committee of the National Institute of Neurological Disorders and Stroke and the National Institute on Deafness and other Communication Disorders with the guidelines set by the National Institutes of Health (ASP1397).

Version history

  1. Preprint posted: March 12, 2021 (view preprint)
  2. Received: March 24, 2021
  3. Accepted: October 20, 2022
  4. Accepted Manuscript published: October 21, 2022 (version 1)
  5. Version of Record published: November 4, 2022 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,290
    Page views
  • 415
    Downloads
  • 10
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sudhuman Singh
  2. Torri D Wilson
  3. Spring Valdivia
  4. Barbara Benowitz
  5. Sarah Chaudhry
  6. Jun Ma
  7. Anisha P Adke
  8. Omar Soler-Cedeno
  9. Daniela Velasquez
  10. Mario A Penzo
  11. Yarimar Carrasquillo
(2022)
An inhibitory circuit from central amygdala to zona incerta drives pain-related behaviors in mice
eLife 11:e68760.
https://doi.org/10.7554/eLife.68760

Share this article

https://doi.org/10.7554/eLife.68760

Further reading

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.

    1. Neuroscience
    Avani Koparkar, Timothy L Warren ... Lena Veit
    Research Article

    Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC’s recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by ‘breaks’ in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.