A projectome of the bumblebee central complex
Abstract
Insects have evolved diverse and remarkable strategies for navigating in various ecologies all over the world. Regardless of species, insects share the presence of a group of morphologically conserved neuropils known collectively as the central complex (CX). The CX is a navigational center, involved in sensory integration and coordinated motor activity. Despite the fact that our understanding of navigational behavior comes predominantly from ants and bees, most of what we know about the underlying neural circuitry of such behavior comes from work in fruit flies. Here we aim to close this gap, by providing the first comprehensive map of all major columnar neurons and their projection patterns in the CX of a bee. We find numerous components of the circuit that appear to be highly conserved between the fly and the bee, but also highlight several key differences which are likely to have important functional rami1cations.
Data availability
Neuron morphologies presented in this paper have been deposited as interactive datasets in the InsectBrainDatabase with accession numbers EIN-0000061 (126nm data) and EIN-0000062 (24nm data). These are available for interactive viewing as well as download.
Article and author information
Author details
Funding
H2020 European Research Council (714599)
- Stanley Heinze
Swedish Research Council (2018-04851 and 621-2012-2213)
- Stanley Heinze
Australian Research Council
- Rachel Templin
Australian Research Foundation
- Rachel Templin
Air Force Office for Scientific Research
- Rachel Templin
International Cotutelle Macquarie University Research Excellence Scholarship (iMQRES 2019060)
- Marcel Ethan Sayre
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2021, Sayre et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,460
- views
-
- 453
- downloads
-
- 54
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Sequenced reactivations of hippocampal neurons called replays, concomitant with sharp-wave ripples in the local field potential, are critical for the consolidation of episodic memory, but whether replays depend on the brain’s reward or novelty signals is unknown. Here, we combined chemogenetic silencing of dopamine neurons in ventral tegmental area (VTA) and simultaneous electrophysiological recordings in dorsal hippocampal CA1, in freely behaving male rats experiencing changes to reward magnitude and environmental novelty. Surprisingly, VTA silencing did not prevent ripple increases where reward was increased, but caused dramatic, aberrant ripple increases where reward was unchanged. These increases were associated with increased reverse-ordered replays. On familiar tracks this effect disappeared, and ripples tracked reward prediction error (RPE), indicating that non-VTA reward signals were sufficient to direct replay. Our results reveal a novel dependence of hippocampal replay on dopamine, and a role for a VTA-independent RPE signal that is reliable only in familiar environments.
-
- Neuroscience
Active inference integrates perception, decision-making, and learning into a united theoretical framework, providing an efficient way to trade off exploration and exploitation by minimizing (expected) free energy. In this study, we asked how the brain represents values and uncertainties (novelty and variability), and resolves these uncertainties under the active inference framework in the exploration-exploitation trade-off. Twenty-five participants performed a contextual two-armed bandit task, with electroencephalogram (EEG) recordings. By comparing the model evidence for active inference and reinforcement learning models of choice behavior, we show that active inference better explains human decision-making under novelty and variability, which entails exploration or information seeking. The EEG sensor-level results show that the activity in the frontal, central, and parietal regions is associated with novelty, while the activity in the frontal and central brain regions is associated with variability. The EEG source-level results indicate that the expected free energy is encoded in the frontal pole and middle frontal gyrus and uncertainties are encoded in different brain regions but with overlap. Our study dissociates the expected free energy and uncertainties in active inference theory and their neural correlates, speaking to the construct validity of active inference in characterizing cognitive processes of human decisions. It provides behavioral and neural evidence of active inference in decision processes and insights into the neural mechanism of human decisions under uncertainties.