Decoding the brain state-dependent relationship between pupil dynamics and resting state fMRI signal fluctuation

  1. Filip Sobczak  Is a corresponding author
  2. Patricia Pais-Roldán
  3. Kengo Takahashi
  4. Xin Yu  Is a corresponding author
  1. Max Planck Institute for Biological Cybernetics, Germany
  2. Massachusetts General Hospital and Harvard Medical School, United States

Abstract

Pupil dynamics serve as a physiological indicator of cognitive processes and arousal states of the brain across a diverse range of behavioral experiments. Pupil diameter changes reflect brain state fluctuations driven by neuromodulatory systems. Resting state fMRI (rs-fMRI) has been used to identify global patterns of neuronal correlation with pupil diameter changes, however, the linkage between distinct brain state-dependent activation patterns of neuromodulatory nuclei with pupil dynamics remains to be explored. Here, we identified four clusters of trials with unique activity patterns related to pupil diameter changes in anesthetized rat brains. Going beyond the typical rs-fMRI correlation analysis with pupil dynamics, we decomposed spatiotemporal patterns of rs-fMRI with principal components analysis (PCA) and characterized the cluster-specific pupil-fMRI relationships by optimizing the PCA component weighting via decoding methods. This work shows that pupil dynamics are tightly coupled with different neuromodulatory centers in different trials, presenting a novel PCA-based decoding method to study the brain state-dependent pupil-fMRI relationship.

Data availability

All fMRI datasets, as well as the synchronized pupil-size vectors, reported in this paper have been deposited in Zenodo at https://zenodo.org/record/4670277 (DOI: 10.5281/zenodo.4670277).Source data for all figures have been uploaded in the system.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Filip Sobczak

    Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
    For correspondence
    fsobczak@tue.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9169-0243
  2. Patricia Pais-Roldán

    Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Kengo Takahashi

    Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Xin Yu

    Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States
    For correspondence
    XYU9@mgh.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9890-5489

Funding

Max-Planck-Gesellschaft (internal funding)

  • Xin Yu

National Institutes of Health (RF1NS113278-01,R01MH111438-01,S10 MH124733-01)

  • Xin Yu

Deutsche Forschungsgemeinschaft (YU215/2-1,Yu215/3-1)

  • Xin Yu

Bundesministerium für Bildung und Forschung (01GQ1702)

  • Filip Sobczak
  • Xin Yu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures were approved by the Animal Protection Committee of Tuebingen (Regierungsprasidium Tuebingen; protocol KY12-14) and performed following the guidelines. The rats were imaged under alpha-chloralose anesthesia.

Copyright

© 2021, Sobczak et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,836
    views
  • 251
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Filip Sobczak
  2. Patricia Pais-Roldán
  3. Kengo Takahashi
  4. Xin Yu
(2021)
Decoding the brain state-dependent relationship between pupil dynamics and resting state fMRI signal fluctuation
eLife 10:e68980.
https://doi.org/10.7554/eLife.68980

Share this article

https://doi.org/10.7554/eLife.68980

Further reading

    1. Neuroscience
    Mitchell P Morton, Sachira Denagamage ... Anirvan S Nandy
    Research Article

    Identical stimuli can be perceived or go unnoticed across successive presentations, producing divergent behavioral outcomes despite similarities in sensory input. We sought to understand how fluctuations in behavioral state and cortical layer and cell class-specific neural activity underlie this perceptual variability. We analyzed physiological measurements of state and laminar electrophysiological activity in visual area V4 while monkeys were rewarded for correctly reporting a stimulus change at perceptual threshold. Hit trials were characterized by a behavioral state with heightened arousal, greater eye position stability, and enhanced decoding performance of stimulus identity from neural activity. Target stimuli evoked stronger responses in V4 in hit trials, and excitatory neurons in the superficial layers, the primary feed-forward output of the cortical column, exhibited lower variability. Feed-forward interlaminar population correlations were stronger on hits. Hit trials were further characterized by greater synchrony between the output layers of the cortex during spontaneous activity, while the stimulus-evoked period showed elevated synchrony in the feed-forward pathway. Taken together, these results suggest that a state of elevated arousal and stable retinal images allow enhanced processing of sensory stimuli, which contributes to hits at perceptual threshold.

    1. Neuroscience
    Mighten C Yip, Mercedes M Gonzalez ... Craig R Forest
    Tools and Resources

    Significant technical challenges exist when measuring synaptic connections between neurons in living brain tissue. The patch clamping technique, when used to probe for synaptic connections, is manually laborious and time-consuming. To improve its efficiency, we pursued another approach: instead of retracting all patch clamping electrodes after each recording attempt, we cleaned just one of them and reused it to obtain another recording while maintaining the others. With one new patch clamp recording attempt, many new connections can be probed. By placing one pipette in front of the others in this way, one can ‘walk’ across the mouse brain slice, termed ‘patch-walking.’ We performed 136 patch clamp attempts for two pipettes, achieving 71 successful whole cell recordings (52.2%). Of these, we probed 29 pairs (i.e. 58 bidirectional probed connections) averaging 91 μm intersomatic distance, finding three connections. Patch-walking yields 80–92% more probed connections, for experiments with 10–100 cells than the traditional synaptic connection searching method.