Decoding the brain state-dependent relationship between pupil dynamics and resting state fMRI signal fluctuation

  1. Filip Sobczak  Is a corresponding author
  2. Patricia Pais-Roldán
  3. Kengo Takahashi
  4. Xin Yu  Is a corresponding author
  1. Max Planck Institute for Biological Cybernetics, Germany
  2. Massachusetts General Hospital and Harvard Medical School, United States

Abstract

Pupil dynamics serve as a physiological indicator of cognitive processes and arousal states of the brain across a diverse range of behavioral experiments. Pupil diameter changes reflect brain state fluctuations driven by neuromodulatory systems. Resting state fMRI (rs-fMRI) has been used to identify global patterns of neuronal correlation with pupil diameter changes, however, the linkage between distinct brain state-dependent activation patterns of neuromodulatory nuclei with pupil dynamics remains to be explored. Here, we identified four clusters of trials with unique activity patterns related to pupil diameter changes in anesthetized rat brains. Going beyond the typical rs-fMRI correlation analysis with pupil dynamics, we decomposed spatiotemporal patterns of rs-fMRI with principal components analysis (PCA) and characterized the cluster-specific pupil-fMRI relationships by optimizing the PCA component weighting via decoding methods. This work shows that pupil dynamics are tightly coupled with different neuromodulatory centers in different trials, presenting a novel PCA-based decoding method to study the brain state-dependent pupil-fMRI relationship.

Data availability

All fMRI datasets, as well as the synchronized pupil-size vectors, reported in this paper have been deposited in Zenodo at https://zenodo.org/record/4670277 (DOI: 10.5281/zenodo.4670277).Source data for all figures have been uploaded in the system.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Filip Sobczak

    Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
    For correspondence
    fsobczak@tue.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9169-0243
  2. Patricia Pais-Roldán

    Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Kengo Takahashi

    Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Xin Yu

    Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States
    For correspondence
    XYU9@mgh.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9890-5489

Funding

Max-Planck-Gesellschaft (internal funding)

  • Xin Yu

National Institutes of Health (RF1NS113278-01,R01MH111438-01,S10 MH124733-01)

  • Xin Yu

Deutsche Forschungsgemeinschaft (YU215/2-1,Yu215/3-1)

  • Xin Yu

Bundesministerium für Bildung und Forschung (01GQ1702)

  • Filip Sobczak
  • Xin Yu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures were approved by the Animal Protection Committee of Tuebingen (Regierungsprasidium Tuebingen; protocol KY12-14) and performed following the guidelines. The rats were imaged under alpha-chloralose anesthesia.

Copyright

© 2021, Sobczak et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,786
    views
  • 245
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Filip Sobczak
  2. Patricia Pais-Roldán
  3. Kengo Takahashi
  4. Xin Yu
(2021)
Decoding the brain state-dependent relationship between pupil dynamics and resting state fMRI signal fluctuation
eLife 10:e68980.
https://doi.org/10.7554/eLife.68980

Share this article

https://doi.org/10.7554/eLife.68980

Further reading

    1. Neuroscience
    Mark M Churchland
    Insight

    Computational principles shed light on why movement is preceded by preparatory activity within the neural networks that control muscles.

    1. Cancer Biology
    2. Neuroscience
    Jeffrey Barr, Austin Walz ... Paola D Vermeer
    Research Article

    Cancer patients often experience changes in mental health, prompting an exploration into whether nerves infiltrating tumors contribute to these alterations by impacting brain functions. Using a mouse model for head and neck cancer and neuronal tracing, we show that tumor-infiltrating nerves connect to distinct brain areas. The activation of this neuronal circuitry altered behaviors (decreased nest-building, increased latency to eat a cookie, and reduced wheel running). Tumor-infiltrating nociceptor neurons exhibited heightened calcium activity and brain regions receiving these neural projections showed elevated Fos as well as increased calcium responses compared to non-tumor-bearing counterparts. The genetic elimination of nociceptor neurons decreased brain Fos expression and mitigated the behavioral alterations induced by the presence of the tumor. While analgesic treatment restored nesting and cookie test behaviors, it did not fully restore voluntary wheel running indicating that pain is not the exclusive driver of such behavioral shifts. Unraveling the interaction between the tumor, infiltrating nerves, and the brain is pivotal to developing targeted interventions to alleviate the mental health burdens associated with cancer.