Protein allocation and utilization in the versatile chemolithoautotroph Cupriavidus necator

  1. Michael Jahn  Is a corresponding author
  2. Nick Crang
  3. Markus Janasch
  4. Andreas Hober
  5. Björn Forsström
  6. Kyle Kimler
  7. Alexander Mattausch
  8. Qi Chen
  9. Johannes Asplund-Samuelsson
  10. Elton Paul Hudson  Is a corresponding author
  1. Science for Life Laboratory, KTH - Royal Institute of Technology, Sweden
  2. The Broad Institute and Boston Children's Hospital, United States
  3. Heidelberg University, Germany

Abstract

Bacteria must balance the different needs for substrate assimilation, growth functions, and resilience in order to thrive in their environment. Of all cellular macromolecules, the bacterial proteome is by far the most important resource and its size is limited. Here, we investigated how the highly versatile 'knallgas' bacterium Cupriavidus necator reallocates protein resources when grown on different limiting substrates and with different growth rates. We determined protein quantity by mass spectrometry and estimated enzyme utilization by resource balance analysis modeling. We found that C. necator invests a large fraction of its proteome in functions that are hardly utilized. Of the enzymes that are utilized, many are present in excess abundance. One prominent example is the strong expression of CBB cycle genes such as Rubisco during growth on fructose. Modeling and mutant competition experiments suggest that CO2-reassimilation through Rubisco does not provide a fitness benefit for heterotrophic growth, but is rather an investment in readiness for autotrophy.

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD024819. Protein quantification results can be browsed and interactively analyzed using the web application available at https://m-jahn.shinyapps.io/ShinyProt.Sequencing data for TnSeq and BarSeq experiments are available at the European Nucleotide Archive with accession number PRJEB43757. The data for competition experiments performed with the transposon mutant library can be browsed and interactively analyzed using the web application available at https://m-jahn.shinyapps.io/ShinyLib/.

The following data sets were generated

Article and author information

Author details

  1. Michael Jahn

    Nanobiotechnology, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
    For correspondence
    michael.jahn@scilifelab.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3913-153X
  2. Nick Crang

    Nanobiotechnology, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7569-6597
  3. Markus Janasch

    Protein Science/Systems Biology, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7745-720X
  4. Andreas Hober

    Protein Science, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8947-2562
  5. Björn Forsström

    Systems Biology, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5248-8568
  6. Kyle Kimler

    The Broad Institute and Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Alexander Mattausch

    Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Qi Chen

    Systems Biology, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  9. Johannes Asplund-Samuelsson

    School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8077-5305
  10. Elton Paul Hudson

    Protein Science, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
    For correspondence
    paul.hudson@scilifelab.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1899-7649

Funding

Swedish Research Council Vetenskapsrådet (2016-06160)

  • Nick Crang
  • Kyle Kimler
  • Johannes Asplund-Samuelsson

Swedish Research Council Formas (2019-01491)

  • Michael Jahn

Swedish Research Council Formas (2015-939)

  • Michael Jahn

Novo Nordisk Fonden (NNF20OC0061469)

  • Markus Janasch
  • Elton Paul Hudson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gisela Storz, National Institute of Child Health and Human Development, United States

Version history

  1. Preprint posted: March 22, 2021 (view preprint)
  2. Received: April 1, 2021
  3. Accepted: October 30, 2021
  4. Accepted Manuscript published: November 1, 2021 (version 1)
  5. Version of Record published: November 11, 2021 (version 2)
  6. Version of Record updated: November 16, 2021 (version 3)

Copyright

© 2021, Jahn et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,472
    views
  • 419
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael Jahn
  2. Nick Crang
  3. Markus Janasch
  4. Andreas Hober
  5. Björn Forsström
  6. Kyle Kimler
  7. Alexander Mattausch
  8. Qi Chen
  9. Johannes Asplund-Samuelsson
  10. Elton Paul Hudson
(2021)
Protein allocation and utilization in the versatile chemolithoautotroph Cupriavidus necator
eLife 10:e69019.
https://doi.org/10.7554/eLife.69019

Share this article

https://doi.org/10.7554/eLife.69019

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Weichen Song, Yongyong Shi, Guan Ning Lin
    Tools and Resources

    We propose a new framework for human genetic association studies: at each locus, a deep learning model (in this study, Sei) is used to calculate the functional genomic activity score for two haplotypes per individual. This score, defined as the Haplotype Function Score (HFS), replaces the original genotype in association studies. Applying the HFS framework to 14 complex traits in the UK Biobank, we identified 3619 independent HFS–trait associations with a significance of p < 5 × 10−8. Fine-mapping revealed 2699 causal associations, corresponding to a median increase of 63 causal findings per trait compared with single-nucleotide polymorphism (SNP)-based analysis. HFS-based enrichment analysis uncovered 727 pathway–trait associations and 153 tissue–trait associations with strong biological interpretability, including ‘circadian pathway-chronotype’ and ‘arachidonic acid-intelligence’. Lastly, we applied least absolute shrinkage and selection operator (LASSO) regression to integrate HFS prediction score with SNP-based polygenic risk scores, which showed an improvement of 16.1–39.8% in cross-ancestry polygenic prediction. We concluded that HFS is a promising strategy for understanding the genetic basis of human complex traits.

    1. Computational and Systems Biology
    Qianmu Yuan, Chong Tian, Yuedong Yang
    Tools and Resources

    Revealing protein binding sites with other molecules, such as nucleic acids, peptides, or small ligands, sheds light on disease mechanism elucidation and novel drug design. With the explosive growth of proteins in sequence databases, how to accurately and efficiently identify these binding sites from sequences becomes essential. However, current methods mostly rely on expensive multiple sequence alignments or experimental protein structures, limiting their genome-scale applications. Besides, these methods haven’t fully explored the geometry of the protein structures. Here, we propose GPSite, a multi-task network for simultaneously predicting binding residues of DNA, RNA, peptide, protein, ATP, HEM, and metal ions on proteins. GPSite was trained on informative sequence embeddings and predicted structures from protein language models, while comprehensively extracting residual and relational geometric contexts in an end-to-end manner. Experiments demonstrate that GPSite substantially surpasses state-of-the-art sequence-based and structure-based approaches on various benchmark datasets, even when the structures are not well-predicted. The low computational cost of GPSite enables rapid genome-scale binding residue annotations for over 568,000 sequences, providing opportunities to unveil unexplored associations of binding sites with molecular functions, biological processes, and genetic variants. The GPSite webserver and annotation database can be freely accessed at https://bio-web1.nscc-gz.cn/app/GPSite.