Dorsal premammillary projection to periaqueductal gray controls escape vigor from innate and conditioned threats

Abstract

Escape from threats has paramount importance for survival. However, it is unknown if a single circuit controls escape vigor from innate and conditioned threats. Cholecystokinin (cck)-expressing cells in the hypothalamic dorsal premammillary nucleus (PMd) are necessary for initiating escape from innate threats via a projection to the dorsolateral periaqueductal gray (dlPAG). We now show that in mice PMd-cck cells are activated during escape, but not other defensive behaviors. PMd-cck ensemble activity can also predict future escape. Furthermore, PMd inhibition decreases escape speed from both innate and conditioned threats. Inhibition of the PMd-cck projection to the dlPAG also decreased escape speed. Intriguingly, PMd-cck and dlPAG activity in mice showed higher mutual information during exposure to innate and conditioned threats. In parallel, human fMRI data show that a posterior hypothalamic-to-dlPAG pathway increased activity during exposure to aversive images, indicating that a similar pathway may possibly have a related role in humans. Our data identify the PMd-dlPAG circuit as a central node, controlling escape vigor elicited by both innate and conditioned threats.

Data availability

All custom written software has been uploaded to https://github.com/schuettepeter/PMd_escape_vigorData has been uploaded tohttps://datadryad.org/stash/dataset/doi:10.5068/D19H5X

The following data sets were generated

Article and author information

Author details

  1. Weisheng Wang

    Psychology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Peter J Schuette

    Psychology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Mimi Q La-Vu

    Psychology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Anita Torossian

    Psychology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Brooke C Tobias

    Psychology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2043-9523
  6. Marta Ceko

    Institute of Cognitive Science, University of Colorado, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Philip A Kragel

    Institute of Cognitive Science, University of Colorado, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Fernando MCV Reis

    Psychology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0121-2887
  9. Shiyu Ji

    Psychology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3413-5766
  10. Megha Sehgal

    Department of Neurobiology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Sandra Maesta-Pereira

    Department of Neurobiology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6522-8311
  12. Meghmik Chakerian

    Psychology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Alcino J Silva

    Departments of Neurobiology, Psychiatry & Biobehavioral Sciences, and Psychology, UCLA, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1587-4558
  14. Newton S Canteras

    Department of Anatomy, University of São Paulo, Sao Paulo, Brazil
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7205-5372
  15. Tor Wager

    Institute of Cognitive Science, University of Colorado, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Jonathan C Kao

    Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9298-0143
  17. Avishek Adhikari

    Psychology, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    avi@psych.ucla.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9187-9211

Funding

National Institutes of Health (R00 MH106649)

  • Avishek Adhikari

Fundação de Amparo à Pesquisa do Estado de São Paulo (2017/08668-1)

  • Fernando MCV Reis

Fundação de Amparo à Pesquisa do Estado de São Paulo (2014/05432-9)

  • Newton S Canteras

Hellman Foundation

  • Avishek Adhikari

Achievement Rewards for College Scientists Foundation

  • Mimi Q La-Vu

National Institutes of Health (R01 MH119089)

  • Avishek Adhikari

Brain and Behavior Research Foundation (22663)

  • Avishek Adhikari

Brain and Behavior Research Foundation (27654)

  • Fernando MCV Reis

Brain and Behavior Research Foundation (27780)

  • Weisheng Wang

Brain and Behavior Research Foundation (29204)

  • Jonathan C Kao

National Institutes of Health (F31 MH121050-01A1)

  • Mimi Q La-Vu

National Science Foundation (DGE-1650604)

  • Peter J Schuette

Fundação de Amparo à Pesquisa do Estado de São Paulo (2015/23092-3)

  • Fernando MCV Reis

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Justin Moscarello

Ethics

Animal experimentation: All procedures have been approved by the University of California, Los Angeles Institutional Animal Care and Use Committee, protocols 2017-011 and 2017-075.

Version history

  1. Received: April 7, 2021
  2. Preprint posted: May 2, 2021 (view preprint)
  3. Accepted: August 28, 2021
  4. Accepted Manuscript published: September 1, 2021 (version 1)
  5. Version of Record published: September 22, 2021 (version 2)

Copyright

© 2021, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,887
    views
  • 311
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Weisheng Wang
  2. Peter J Schuette
  3. Mimi Q La-Vu
  4. Anita Torossian
  5. Brooke C Tobias
  6. Marta Ceko
  7. Philip A Kragel
  8. Fernando MCV Reis
  9. Shiyu Ji
  10. Megha Sehgal
  11. Sandra Maesta-Pereira
  12. Meghmik Chakerian
  13. Alcino J Silva
  14. Newton S Canteras
  15. Tor Wager
  16. Jonathan C Kao
  17. Avishek Adhikari
(2021)
Dorsal premammillary projection to periaqueductal gray controls escape vigor from innate and conditioned threats
eLife 10:e69178.
https://doi.org/10.7554/eLife.69178

Share this article

https://doi.org/10.7554/eLife.69178

Further reading

    1. Neuroscience
    Mohsen Sadeghi, Reza Sharif Razavian ... Dagmar Sternad
    Research Article

    Natural behaviors have redundancy, which implies that humans and animals can achieve their goals with different strategies. Given only observations of behavior, is it possible to infer the control objective that the subject is employing? This challenge is particularly acute in animal behavior because we cannot ask or instruct the subject to use a particular strategy. This study presents a three-pronged approach to infer an animal’s control objective from behavior. First, both humans and monkeys performed a virtual balancing task for which different control strategies could be utilized. Under matched experimental conditions, corresponding behaviors were observed in humans and monkeys. Second, a generative model was developed that represented two main control objectives to achieve the task goal. Model simulations were used to identify aspects of behavior that could distinguish which control objective was being used. Third, these behavioral signatures allowed us to infer the control objective used by human subjects who had been instructed to use one control objective or the other. Based on this validation, we could then infer objectives from animal subjects. Being able to positively identify a subject’s control objective from observed behavior can provide a powerful tool to neurophysiologists as they seek the neural mechanisms of sensorimotor coordination.

    1. Neuroscience
    Yiyi Chen, Laimdota Zizmare ... Christoph Trautwein
    Research Article

    The retina consumes massive amounts of energy, yet its metabolism and substrate exploitation remain poorly understood. Here, we used a murine explant model to manipulate retinal energy metabolism under entirely controlled conditions and utilised 1H-NMR spectroscopy-based metabolomics, in situ enzyme detection, and cell viability readouts to uncover the pathways of retinal energy production. Our experimental manipulations resulted in varying degrees of photoreceptor degeneration, while the inner retina and retinal pigment epithelium were essentially unaffected. This selective vulnerability of photoreceptors suggested very specific adaptations in their energy metabolism. Rod photoreceptors were found to rely strongly on oxidative phosphorylation, but only mildly on glycolysis. Conversely, cone photoreceptors were dependent on glycolysis but insensitive to electron transport chain decoupling. Importantly, photoreceptors appeared to uncouple glycolytic and Krebs-cycle metabolism via three different pathways: (1) the mini-Krebs-cycle, fuelled by glutamine and branched chain amino acids, generating N-acetylaspartate; (2) the alanine-generating Cahill-cycle; (3) the lactate-releasing Cori-cycle. Moreover, the metabolomics data indicated a shuttling of taurine and hypotaurine between the retinal pigment epithelium and photoreceptors, likely resulting in an additional net transfer of reducing power to photoreceptors. These findings expand our understanding of retinal physiology and pathology and shed new light on neuronal energy homeostasis and the pathogenesis of neurodegenerative diseases.