Dorsal premammillary projection to periaqueductal gray controls escape vigor from innate and conditioned threats

Abstract

Escape from threats has paramount importance for survival. However, it is unknown if a single circuit controls escape vigor from innate and conditioned threats. Cholecystokinin (cck)-expressing cells in the hypothalamic dorsal premammillary nucleus (PMd) are necessary for initiating escape from innate threats via a projection to the dorsolateral periaqueductal gray (dlPAG). We now show that in mice PMd-cck cells are activated during escape, but not other defensive behaviors. PMd-cck ensemble activity can also predict future escape. Furthermore, PMd inhibition decreases escape speed from both innate and conditioned threats. Inhibition of the PMd-cck projection to the dlPAG also decreased escape speed. Intriguingly, PMd-cck and dlPAG activity in mice showed higher mutual information during exposure to innate and conditioned threats. In parallel, human fMRI data show that a posterior hypothalamic-to-dlPAG pathway increased activity during exposure to aversive images, indicating that a similar pathway may possibly have a related role in humans. Our data identify the PMd-dlPAG circuit as a central node, controlling escape vigor elicited by both innate and conditioned threats.

Data availability

All custom written software has been uploaded to https://github.com/schuettepeter/PMd_escape_vigorData has been uploaded tohttps://datadryad.org/stash/dataset/doi:10.5068/D19H5X

The following data sets were generated

Article and author information

Author details

  1. Weisheng Wang

    Psychology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Peter J Schuette

    Psychology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Mimi Q La-Vu

    Psychology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Anita Torossian

    Psychology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Brooke C Tobias

    Psychology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2043-9523
  6. Marta Ceko

    Institute of Cognitive Science, University of Colorado, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Philip A Kragel

    Institute of Cognitive Science, University of Colorado, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Fernando MCV Reis

    Psychology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0121-2887
  9. Shiyu Ji

    Psychology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3413-5766
  10. Megha Sehgal

    Department of Neurobiology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Sandra Maesta-Pereira

    Department of Neurobiology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6522-8311
  12. Meghmik Chakerian

    Psychology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Alcino J Silva

    Departments of Neurobiology, Psychiatry & Biobehavioral Sciences, and Psychology, UCLA, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1587-4558
  14. Newton S Canteras

    Department of Anatomy, University of São Paulo, Sao Paulo, Brazil
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7205-5372
  15. Tor Wager

    Institute of Cognitive Science, University of Colorado, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Jonathan C Kao

    Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9298-0143
  17. Avishek Adhikari

    Psychology, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    avi@psych.ucla.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9187-9211

Funding

National Institutes of Health (R00 MH106649)

  • Avishek Adhikari

Fundação de Amparo à Pesquisa do Estado de São Paulo (2017/08668-1)

  • Fernando MCV Reis

Fundação de Amparo à Pesquisa do Estado de São Paulo (2014/05432-9)

  • Newton S Canteras

Hellman Foundation

  • Avishek Adhikari

Achievement Rewards for College Scientists Foundation

  • Mimi Q La-Vu

National Institutes of Health (R01 MH119089)

  • Avishek Adhikari

Brain and Behavior Research Foundation (22663)

  • Avishek Adhikari

Brain and Behavior Research Foundation (27654)

  • Fernando MCV Reis

Brain and Behavior Research Foundation (27780)

  • Weisheng Wang

Brain and Behavior Research Foundation (29204)

  • Jonathan C Kao

National Institutes of Health (F31 MH121050-01A1)

  • Mimi Q La-Vu

National Science Foundation (DGE-1650604)

  • Peter J Schuette

Fundação de Amparo à Pesquisa do Estado de São Paulo (2015/23092-3)

  • Fernando MCV Reis

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures have been approved by the University of California, Los Angeles Institutional Animal Care and Use Committee, protocols 2017-011 and 2017-075.

Copyright

© 2021, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,287
    views
  • 341
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Weisheng Wang
  2. Peter J Schuette
  3. Mimi Q La-Vu
  4. Anita Torossian
  5. Brooke C Tobias
  6. Marta Ceko
  7. Philip A Kragel
  8. Fernando MCV Reis
  9. Shiyu Ji
  10. Megha Sehgal
  11. Sandra Maesta-Pereira
  12. Meghmik Chakerian
  13. Alcino J Silva
  14. Newton S Canteras
  15. Tor Wager
  16. Jonathan C Kao
  17. Avishek Adhikari
(2021)
Dorsal premammillary projection to periaqueductal gray controls escape vigor from innate and conditioned threats
eLife 10:e69178.
https://doi.org/10.7554/eLife.69178

Share this article

https://doi.org/10.7554/eLife.69178

Further reading

    1. Neuroscience
    Zhujun Shao, Mengya Zhang, Qing Yu
    Research Article

    When holding visual information temporarily in working memory (WM), the neural representation of the memorandum is distributed across various cortical regions, including visual and frontal cortices. However, the role of stimulus representation in visual and frontal cortices during WM has been controversial. Here, we tested the hypothesis that stimulus representation persists in the frontal cortex to facilitate flexible control demands in WM. During functional MRI, participants flexibly switched between simple WM maintenance of visual stimulus or more complex rule-based categorization of maintained stimulus on a trial-by-trial basis. Our results demonstrated enhanced stimulus representation in the frontal cortex that tracked demands for active WM control and enhanced stimulus representation in the visual cortex that tracked demands for precise WM maintenance. This differential frontal stimulus representation traded off with the newly-generated category representation with varying control demands. Simulation using multi-module recurrent neural networks replicated human neural patterns when stimulus information was preserved for network readout. Altogether, these findings help reconcile the long-standing debate in WM research, and provide empirical and computational evidence that flexible stimulus representation in the frontal cortex during WM serves as a potential neural coding scheme to accommodate the ever-changing environment.

    1. Neuroscience
    Franziska Auer, Katherine Nardone ... David Schoppik
    Research Article

    Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells — the output neurons of the cerebellar cortex — as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.