CA1 pyramidal cell diversity is rootedin the time of neurogenesis

  1. Davide Cavalieri
  2. Alexandra Angelova
  3. Anas Islah
  4. Catherine Lopez
  5. Marco Bocchio
  6. Yannick Bollmann
  7. Agnès Baude
  8. Rosa Cossart  Is a corresponding author
  1. INSERM Aix-Marseille University, France
  2. Newcastle University, United Kingdom
  3. King's College London, United Kingdom
  4. French Institute of Health and Medical Research, France

Abstract

Cellular diversity supports the computational capacity and flexibility of cortical circuits. Accordingly, principal neurons at the CA1 output node of the murine hippocampus are increasingly recognized as a heterogeneous population. Their genes, molecular content, intrinsic morphophysiology, connectivity, and function seem to segregate along the main anatomical axes of the hippocampus. Since these axes reflect the temporal order of principal cell neurogenesis, we directly examined the relationship between birthdate and CA1 pyramidal neuron diversity, focusing on the ventral hippocampus. We used a genetic fate-mapping approach that allowed tagging three groups of age-matched principal neurons: pioneer, early- and late-born. Using a combination of neuroanatomy, slice physiology, connectivity tracing and cFos staining in mice, we show that birthdate is a strong predictor of CA1 principal cell diversity. We unravel a subpopulation of pioneer neurons recruited in familiar environments with remarkable positioning, morpho-physiological features, and connectivity. Therefore, despite the expected plasticity of hippocampal circuits, given their role in learning and memory, the diversity of their main components is also partly determined at the earliest steps of development.

Data availability

Data generated or analysed during this study are included in the manuscript or available on Dryad (doi:10.5061/dryad.76hdr7swh). A single source data file (multiple sheets) is included in the submission. Raw data and code from the following experiments are also included in the submission: ex vivo electrophysiology. All other data and codes will be made public as soon as possible and are available upon request.

The following data sets were generated
    1. Davide Cavalieri
    (2021) Whole-cell voltage clamp recordings in slice
    Dryad Digital Repository, doi:10.5061/dryad.r4xgxd2cf.

Article and author information

Author details

  1. Davide Cavalieri

    INMED, INSERM Aix-Marseille University, marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Alexandra Angelova

    INMED, INSERM Aix-Marseille University, marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Anas Islah

    INMED, INSERM Aix-Marseille University, marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Catherine Lopez

    INMED, INSERM Aix-Marseille University, marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Marco Bocchio

    Newcastle University, Newcastle, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Yannick Bollmann

    King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Agnès Baude

    INMED, French Institute of Health and Medical Research, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7025-364X
  8. Rosa Cossart

    INMED, French Institute of Health and Medical Research, Marseille, France
    For correspondence
    rosa.cossart@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2111-6638

Funding

H2020 European Research Council (646925)

  • Rosa Cossart

Agence Nationale de la Recherche (ANR-13-ISV40002-01)

  • Rosa Cossart

Agence Nationale de la Recherche (JTC-2017-021)

  • Rosa Cossart

Fondation Bettencourt Schueller (Prix des Sciences de la Vie)

  • Rosa Cossart

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All protocols were performed under the guidelines of the French National Ethics Committee for Sciencesand Health report on "Ethical Principles for Animal Experimentation" in agreement with theEuropean Community Directive 86/609/EEC under agreement #01 413.03. All efforts were madeto minimize pain and suffering and to reduce the number of animals used.

Copyright

© 2021, Cavalieri et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,876
    views
  • 439
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Davide Cavalieri
  2. Alexandra Angelova
  3. Anas Islah
  4. Catherine Lopez
  5. Marco Bocchio
  6. Yannick Bollmann
  7. Agnès Baude
  8. Rosa Cossart
(2021)
CA1 pyramidal cell diversity is rootedin the time of neurogenesis
eLife 10:e69270.
https://doi.org/10.7554/eLife.69270

Share this article

https://doi.org/10.7554/eLife.69270

Further reading

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.

    1. Neuroscience
    Sven Ohl, Martin Rolfs
    Research Article

    Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.