CA1 pyramidal cell diversity is rootedin the time of neurogenesis

  1. Davide Cavalieri
  2. Alexandra Angelova
  3. Anas Islah
  4. Catherine Lopez
  5. Marco Bocchio
  6. Yannick Bollmann
  7. Agnès Baude
  8. Rosa Cossart  Is a corresponding author
  1. INSERM Aix-Marseille University, France
  2. Newcastle University, United Kingdom
  3. King's College London, United Kingdom
  4. French Institute of Health and Medical Research, France

Abstract

Cellular diversity supports the computational capacity and flexibility of cortical circuits. Accordingly, principal neurons at the CA1 output node of the murine hippocampus are increasingly recognized as a heterogeneous population. Their genes, molecular content, intrinsic morphophysiology, connectivity, and function seem to segregate along the main anatomical axes of the hippocampus. Since these axes reflect the temporal order of principal cell neurogenesis, we directly examined the relationship between birthdate and CA1 pyramidal neuron diversity, focusing on the ventral hippocampus. We used a genetic fate-mapping approach that allowed tagging three groups of age-matched principal neurons: pioneer, early- and late-born. Using a combination of neuroanatomy, slice physiology, connectivity tracing and cFos staining in mice, we show that birthdate is a strong predictor of CA1 principal cell diversity. We unravel a subpopulation of pioneer neurons recruited in familiar environments with remarkable positioning, morpho-physiological features, and connectivity. Therefore, despite the expected plasticity of hippocampal circuits, given their role in learning and memory, the diversity of their main components is also partly determined at the earliest steps of development.

Data availability

Data generated or analysed during this study are included in the manuscript or available on Dryad (doi:10.5061/dryad.76hdr7swh). A single source data file (multiple sheets) is included in the submission. Raw data and code from the following experiments are also included in the submission: ex vivo electrophysiology. All other data and codes will be made public as soon as possible and are available upon request.

The following data sets were generated
    1. Davide Cavalieri
    (2021) Whole-cell voltage clamp recordings in slice
    Dryad Digital Repository, doi:10.5061/dryad.r4xgxd2cf.

Article and author information

Author details

  1. Davide Cavalieri

    INMED, INSERM Aix-Marseille University, marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Alexandra Angelova

    INMED, INSERM Aix-Marseille University, marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Anas Islah

    INMED, INSERM Aix-Marseille University, marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Catherine Lopez

    INMED, INSERM Aix-Marseille University, marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Marco Bocchio

    Newcastle University, Newcastle, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Yannick Bollmann

    King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Agnès Baude

    INMED, French Institute of Health and Medical Research, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7025-364X
  8. Rosa Cossart

    INMED, French Institute of Health and Medical Research, Marseille, France
    For correspondence
    rosa.cossart@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2111-6638

Funding

H2020 European Research Council (646925)

  • Rosa Cossart

Agence Nationale de la Recherche (ANR-13-ISV40002-01)

  • Rosa Cossart

Agence Nationale de la Recherche (JTC-2017-021)

  • Rosa Cossart

Fondation Bettencourt Schueller (Prix des Sciences de la Vie)

  • Rosa Cossart

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. John R Huguenard, Stanford University School of Medicine, United States

Ethics

Animal experimentation: All protocols were performed under the guidelines of the French National Ethics Committee for Sciencesand Health report on "Ethical Principles for Animal Experimentation" in agreement with theEuropean Community Directive 86/609/EEC under agreement #01 413.03. All efforts were madeto minimize pain and suffering and to reduce the number of animals used.

Version history

  1. Preprint posted: March 7, 2021 (view preprint)
  2. Received: April 9, 2021
  3. Accepted: October 31, 2021
  4. Accepted Manuscript published: November 1, 2021 (version 1)
  5. Version of Record published: December 9, 2021 (version 2)

Copyright

© 2021, Cavalieri et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,447
    views
  • 394
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Davide Cavalieri
  2. Alexandra Angelova
  3. Anas Islah
  4. Catherine Lopez
  5. Marco Bocchio
  6. Yannick Bollmann
  7. Agnès Baude
  8. Rosa Cossart
(2021)
CA1 pyramidal cell diversity is rootedin the time of neurogenesis
eLife 10:e69270.
https://doi.org/10.7554/eLife.69270

Share this article

https://doi.org/10.7554/eLife.69270

Further reading

    1. Neuroscience
    Alexandra L Jellinger, Rebecca L Suthard ... Steve Ramirez
    Research Article

    Negative memories engage a brain and body-wide stress response in humans that can alter cognition and behavior. Prolonged stress responses induce maladaptive cellular, circuit, and systems-level changes that can lead to pathological brain states and corresponding disorders in which mood and memory are affected. However, it is unclear if repeated activation of cells processing negative memories induces similar phenotypes in mice. In this study, we used an activity-dependent tagging method to access neuronal ensembles and assess their molecular characteristics. Sequencing memory engrams in mice revealed that positive (male-to-female exposure) and negative (foot shock) cells upregulated genes linked to anti- and pro-inflammatory responses, respectively. To investigate the impact of persistent activation of negative engrams, we chemogenetically activated them in the ventral hippocampus over 3 months and conducted anxiety and memory-related tests. Negative engram activation increased anxiety behaviors in both 6- and 14-month-old mice, reduced spatial working memory in older mice, impaired fear extinction in younger mice, and heightened fear generalization in both age groups. Immunohistochemistry revealed changes in microglial and astrocytic structure and number in the hippocampus. In summary, repeated activation of negative memories induces lasting cellular and behavioral abnormalities in mice, offering insights into the negative effects of chronic negative thinking-like behaviors on human health.

    1. Neuroscience
    Alexandra H Leighton, Juliette E Cheyne, Christian Lohmann
    Research Article

    Synaptic inputs to cortical neurons are highly structured in adult sensory systems, such that neighboring synapses along dendrites are activated by similar stimuli. This organization of synaptic inputs, called synaptic clustering, is required for high-fidelity signal processing, and clustered synapses can already be observed before eye opening. However, how clustered inputs emerge during development is unknown. Here, we employed concurrent in vivo whole-cell patch-clamp and dendritic calcium imaging to map spontaneous synaptic inputs to dendrites of layer 2/3 neurons in the mouse primary visual cortex during the second postnatal week until eye opening. We found that the number of functional synapses and the frequency of transmission events increase several fold during this developmental period. At the beginning of the second postnatal week, synapses assemble specifically in confined dendritic segments, whereas other segments are devoid of synapses. By the end of the second postnatal week, just before eye opening, dendrites are almost entirely covered by domains of co-active synapses. Finally, co-activity with their neighbor synapses correlates with synaptic stabilization and potentiation. Thus, clustered synapses form in distinct functional domains presumably to equip dendrites with computational modules for high-capacity sensory processing when the eyes open.