The entorhinal cortex modulates trace fear memory formation and neuroplasticity in the mouse lateral amygdala via cholecystokinin

  1. Hemin Feng
  2. Junfeng Su
  3. Wei Fang
  4. Xi Chen
  5. Jufang He  Is a corresponding author
  1. City University of Hong Kong, Hong Kong

Abstract

Although fear memory formation is essential for survival and fear-related mental disorders, the neural circuitry and mechanism are incompletely understood. Here, we utilized trace fear conditioning to study the formation of trace fear memory in mice. We identified the entorhinal cortex (EC) as a critical component of sensory signaling to the amygdala. We adopted both loss-of-function and gain-of-function experiments to demonstrate that release of the cholecystokinin (CCK) from the EC is required for trace fear memory formation. We discovered that CCK-positive neurons project from the EC to the lateral nuclei of the amygdala (LA), and inhibition of CCK-dependent signaling in the EC prevented long-term potentiation of the auditory response in the LA and formation of trace fear memory. In summary, high-frequency activation of EC neurons triggers the release of CCK in their projection terminals in the LA, potentiating auditory response in LA neurons. The neural plasticity in the LA leads to trace fear memory formation.

Data availability

Data for this submission has been uploaded to the Dryad Digital Repository,available once published: doi:10.5061/dryad.0p2ngf217

The following data sets were generated

Article and author information

Author details

  1. Hemin Feng

    Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  2. Junfeng Su

    Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  3. Wei Fang

    Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  4. Xi Chen

    Departments of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2144-6584
  5. Jufang He

    Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
    For correspondence
    jufanghe@cityu.edu.hk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4288-5957

Funding

Hong Kong Research Grants Council (T13-605/18-W,11102417M,11101818M,11103220)

  • Jufang He

Natural Science Foundation of China (31671102)

  • Jufang He

Health and Medical Research Fund (06172456,31571096)

  • Jufang He

Innovation and Technology Fund (MRP/101/17X,MPF/053/18X,GHP_075_19GD)

  • Jufang He

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures were approved by the Animal Subjects Ethics Sub-Committee of the City University of Hong Kong (Reference number of animal ethics review: A-0529 and A-0282)

Copyright

© 2021, Feng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,950
    views
  • 396
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hemin Feng
  2. Junfeng Su
  3. Wei Fang
  4. Xi Chen
  5. Jufang He
(2021)
The entorhinal cortex modulates trace fear memory formation and neuroplasticity in the mouse lateral amygdala via cholecystokinin
eLife 10:e69333.
https://doi.org/10.7554/eLife.69333

Share this article

https://doi.org/10.7554/eLife.69333

Further reading

    1. Neuroscience
    Morgan Fitzgerald, Eena Kosik, Bradley Voytek
    Insight

    Changes in neural activity thought to reflect brain aging may be partly influenced by age-dependent signals ‘leaking’ from the heart.

    1. Evolutionary Biology
    2. Neuroscience
    Yujiang Wang, Karoline Leiberg ... Bruno Mota
    Research Article

    The cerebral cortex displays a bewildering diversity of shapes and sizes across and within species. Despite this diversity, we present a universal multi-scale description of primate cortices. We show that all cortical shapes can be described as a set of nested folds of different sizes. As neighbouring folds are gradually merged, the cortices of 11 primate species follow a common scale-free morphometric trajectory, that also overlaps with over 70 other mammalian species. Our results indicate that all cerebral cortices are approximations of the same archetypal fractal shape with a fractal dimension of df = 2.5. Importantly, this new understanding enables a more precise quantification of brain morphology as a function of scale. To demonstrate the importance of this new understanding, we show a scale-dependent effect of ageing on brain morphology. We observe a more than fourfold increase in effect size (from two standard deviations to eight standard deviations) at a spatial scale of approximately 2 mm compared to standard morphological analyses. Our new understanding may, therefore, generate superior biomarkers for a range of conditions in the future.