Reexamination of N-terminal domains of Syntaxin-1 in vesicle fusion from central murine synapses

Abstract

Syntaxin-1 (STX1) and Munc18-1 are two requisite components of synaptic vesicular release machinery, so much so synaptic transmission cannot proceed in their absence. They form a tight complex through two major binding modes: through STX1's N-peptide and through STX's closed conformation driven by its Habc- domain. However, physiological roles of these two reportedly different binding modes in synapses are still controversial. Here we characterized the roles of STX1's N-peptide, Habc-domain, and open conformation with and without N-peptide deletion using our STX1-null mouse model system and exogenous reintroduction of STX1A mutants. We show, on the contrary to the general view, that the Habc-domain is absolutely required and N-peptide is dispensable for synaptic transmission. However, STX1A's N-peptide plays a regulatory role, particularly in the Ca2+-sensitivity and the short-term plasticity of vesicular release, whereas STX1's open-conformation governs the vesicle fusogenicity. Strikingly, we also show neurotransmitter release still proceeds when the two interaction modes between STX1A and Munc18-1 are presumably intervened, necessitating a refinement of the conceptualization of STX1A-Munc18-1 interaction.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. We uploaded source data files which show summary tables of mean, SEM, median, number of independent cultures, number of independent measurements, real p value for each test performed, and statistical test used for each separate figure.

Article and author information

Author details

  1. Gülçin Vardar

    Institute of Neurophysiology, Charité Universitätsmedizin, Berlin, Germany
    For correspondence
    gulcinv@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  2. Andrea Salazar-Lázaro

    Institute of Neurophysiology, Charité Universitätsmedizin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Marisa M Brockmann

    Institut für Neurophysiologie, Charité Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1386-5359
  4. Marion Weber-Boyvat

    Institute of Neurophysiology, Charité Universitätsmedizin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Sina Zobel

    Institute of Neurophysiology, Charité Universitätsmedizin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Victor Wumbor-Apin Kumbol

    Einstein Center for Neurosciences Berlin, Charité Universitätsmedizin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Thorsten Trimbuch

    Department of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Christian Rosenmund

    Institut für Neurophysiologie, Charité Universitätsmedizin Berlin, Berlin, Germany
    For correspondence
    christian.rosenmund@charite.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3905-2444

Funding

Deutsche Forschungsgemeinschaft (SFB958,TRR186)

  • Christian Rosenmund

Deutsche Forschungsgemeinschaft (Reinhart Koselleck Projects)

  • Christian Rosenmund

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures for animal maintenance and experiments were in accordance with the regulations of and approved by the animal welfare committee of Charité-Universitätsmedizin and the Berlin state government Agency for Health and Social Services under license number T0220/09. The generation of STX1-null mouse line was described previously (Arancillo et al. 2013, Vardar et al. 2016).

Copyright

© 2021, Vardar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,249
    views
  • 200
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gülçin Vardar
  2. Andrea Salazar-Lázaro
  3. Marisa M Brockmann
  4. Marion Weber-Boyvat
  5. Sina Zobel
  6. Victor Wumbor-Apin Kumbol
  7. Thorsten Trimbuch
  8. Christian Rosenmund
(2021)
Reexamination of N-terminal domains of Syntaxin-1 in vesicle fusion from central murine synapses
eLife 10:e69498.
https://doi.org/10.7554/eLife.69498

Share this article

https://doi.org/10.7554/eLife.69498

Further reading

    1. Neuroscience
    Brian C Ruyle, Sarah Masud ... Jose A Morón
    Research Article

    Millions of Americans suffering from Opioid Use Disorders face a high risk of fatal overdose due to opioid-induced respiratory depression (OIRD). Fentanyl, a powerful synthetic opioid, is a major contributor to the rising rates of overdose deaths. Reversing fentanyl overdoses has proved challenging due to its high potency and the rapid onset of OIRD. We assessed the contributions of central and peripheral mu opioid receptors (MORs) in mediating fentanyl-induced physiological responses. The peripherally restricted MOR antagonist naloxone methiodide (NLXM) both prevented and reversed OIRD to a degree comparable to that of naloxone (NLX), indicating substantial involvement of peripheral MORs to OIRD. Interestingly, NLXM-mediated OIRD reversal did not produce aversive behaviors observed after NLX. We show that neurons in the nucleus of the solitary tract (nTS), the first central synapse of peripheral afferents, exhibit a biphasic activity profile following fentanyl exposure. NLXM pretreatment attenuates this activity, suggesting that these responses are mediated by peripheral MORs. Together, these findings establish a critical role for peripheral MORs, including ascending inputs to the nTS, as sites of dysfunction during OIRD. Furthermore, selective peripheral MOR antagonism could be a promising therapeutic strategy for managing OIRD by sparing CNS-driven acute opioid-associated withdrawal and aversion observed after NLX.

    1. Neuroscience
    David C Williams, Amanda Chu ... Michael A McDannald
    Research Advance Updated

    Recognizing and responding to threat cues is essential to survival. Freezing is a predominant threat behavior in rats. We have recently shown that a threat cue can organize diverse behaviors beyond freezing, including locomotion (Chu et al., 2024). However, that experimental design was complex, required many sessions, and had rats receive many foot shock presentations. Moreover, the findings were descriptive. Here, we gave female and male Long Evans rats cue light illumination paired or unpaired with foot shock (eight total) in a conditioned suppression setting using a range of shock intensities (0.15, 0.25, 0.35, or 0.50 mA). We found that conditioned suppression was only observed at higher foot shock intensities (0.35 mA and 0.50 mA). We constructed comprehensive temporal ethograms by scoring 22,272 frames across 12 behavior categories in 200-ms intervals around cue light illumination. The 0.50 mA and 0.35 mA shock-paired visual cues suppressed reward seeking, rearing, and scaling, as well as light-directed rearing and light-directed scaling. These shock-paired visual cues further elicited locomotion and freezing. Linear discriminant analyses showed that ethogram data could accurately classify rats into paired and unpaired groups. Using complete ethogram data produced superior classification compared to behavior subsets, including an immobility subset featuring freezing. The results demonstrate diverse threat behaviors – in a short and simple procedure – containing sufficient information to distinguish the visual fear conditioning status of individual rats.