A functional topography within the cholinergic basal forebrain for encoding sensory cues and behavioral reinforcement outcomes

  1. Blaise Robert
  2. Eyal Y Kimchi
  3. Yurika Watanabe
  4. Tatenda Chakoma
  5. Miao Jing
  6. Yulong Li
  7. Daniel B Polley  Is a corresponding author
  1. Massachusetts Eye and Ear Infirmary, United States
  2. Massachusetts General Hospital, United States
  3. Chinese Institute for Brain Research, China
  4. Peiking University School of Life Sciences, China

Abstract

Basal forebrain cholinergic neurons (BFCNs) project throughout the cortex to regulate arousal, stimulus salience, plasticity, and learning. Although often treated as a monolithic structure, the basal forebrain features distinct connectivity along its rostrocaudal axis that could impart regional differences in BFCN processing. Here, we performed simultaneous bulk calcium imaging from rostral and caudal BFCNs over a one-month period of variable reinforcement learning in mice. BFCNs in both regions showed equivalently weak responses to unconditioned visual stimuli and anticipated rewards. Rostral BFCNs in the horizontal limb of the diagonal band were more responsive to reward omission, more accurately classified behavioral outcomes, and more closely tracked fluctuations in pupil-indexed global brain state. Caudal tail BFCNs in globus pallidus and substantia innominata were more responsive to unconditioned auditory stimuli, orofacial movements, aversive reinforcement, and showed robust associative plasticity for punishment-predicting cues. These results identify a functional topography that diversifies cholinergic modulatory signals broadcast to downstream brain regions.

Data availability

Figure 1 - Source Data 1 contains the data for Figure 1D. All data generated or analyzed during this study are available on Mendeley Data (doi:10.17632/d8tjdxyjcm.2)

The following data sets were generated

Article and author information

Author details

  1. Blaise Robert

    Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7945-8775
  2. Eyal Y Kimchi

    Department of Neurology, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yurika Watanabe

    Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Tatenda Chakoma

    Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Miao Jing

    Chinese Institute for Brain Research, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Yulong Li

    State Key Laboratory of Membrane Biology, Peiking University School of Life Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Daniel B Polley

    Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, United States
    For correspondence
    Daniel_Polley@meei.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5120-2409

Funding

National Institute on Deafness and Other Communication Disorders (DC017078)

  • Daniel B Polley

The Nancy Lurie Marks Family Foundation

  • Daniel B Polley

Herchel Smith Harvard Scholarship

  • Blaise Robert

Fondation Zdenek et Michaela Bakala Scholarship

  • Blaise Robert

National Institute of Mental Health (K08MH116135)

  • Eyal Y Kimchi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were approved by the Massachusetts Eye and Ear Animal Care and Use Committee (protocol #10-03-006A) and followed the guidelines established by the National Institutes of Health for the care and use of laboratory animals.

Reviewing Editor

  1. Martin Vinck, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Germany

Version history

  1. Preprint posted: April 19, 2019 (view preprint)
  2. Received: April 17, 2021
  3. Accepted: November 16, 2021
  4. Accepted Manuscript published: November 25, 2021 (version 1)
  5. Version of Record published: December 8, 2021 (version 2)

Copyright

© 2021, Robert et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,045
    Page views
  • 347
    Downloads
  • 11
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Blaise Robert
  2. Eyal Y Kimchi
  3. Yurika Watanabe
  4. Tatenda Chakoma
  5. Miao Jing
  6. Yulong Li
  7. Daniel B Polley
(2021)
A functional topography within the cholinergic basal forebrain for encoding sensory cues and behavioral reinforcement outcomes
eLife 10:e69514.
https://doi.org/10.7554/eLife.69514

Further reading

    1. Neuroscience
    Amanda J González Segarra, Gina Pontes ... Kristin Scott
    Research Article

    Consumption of food and water is tightly regulated by the nervous system to maintain internal nutrient homeostasis. Although generally considered independently, interactions between hunger and thirst drives are important to coordinate competing needs. In Drosophila, four neurons called the interoceptive subesophageal zone neurons (ISNs) respond to intrinsic hunger and thirst signals to oppositely regulate sucrose and water ingestion. Here, we investigate the neural circuit downstream of the ISNs to examine how ingestion is regulated based on internal needs. Utilizing the recently available fly brain connectome, we find that the ISNs synapse with a novel cell-type bilateral T-shaped neuron (BiT) that projects to neuroendocrine centers. In vivo neural manipulations revealed that BiT oppositely regulates sugar and water ingestion. Neuroendocrine cells downstream of ISNs include several peptide-releasing and peptide-sensing neurons, including insulin producing cells (IPCs), crustacean cardioactive peptide (CCAP) neurons, and CCHamide-2 receptor isoform RA (CCHa2R-RA) neurons. These neurons contribute differentially to ingestion of sugar and water, with IPCs and CCAP neurons oppositely regulating sugar and water ingestion, and CCHa2R-RA neurons modulating only water ingestion. Thus, the decision to consume sugar or water occurs via regulation of a broad peptidergic network that integrates internal signals of nutritional state to generate nutrient-specific ingestion.

    1. Neuroscience
    Lucas Y Tian, Timothy L Warren ... Michael S Brainard
    Research Article

    Complex behaviors depend on the coordinated activity of neural ensembles in interconnected brain areas. The behavioral function of such coordination, often measured as co-fluctuations in neural activity across areas, is poorly understood. One hypothesis is that rapidly varying co-fluctuations may be a signature of moment-by-moment task-relevant influences of one area on another. We tested this possibility for error-corrective adaptation of birdsong, a form of motor learning which has been hypothesized to depend on the top-down influence of a higher-order area, LMAN (lateral magnocellular nucleus of the anterior nidopallium), in shaping moment-by-moment output from a primary motor area, RA (robust nucleus of the arcopallium). In paired recordings of LMAN and RA in singing birds, we discovered a neural signature of a top-down influence of LMAN on RA, quantified as an LMAN-leading co-fluctuation in activity between these areas. During learning, this co-fluctuation strengthened in a premotor temporal window linked to the specific movement, sequential context, and acoustic modification associated with learning. Moreover, transient perturbation of LMAN activity specifically within this premotor window caused rapid occlusion of pitch modifications, consistent with LMAN conveying a temporally localized motor-biasing signal. Combined, our results reveal a dynamic top-down influence of LMAN on RA that varies on the rapid timescale of individual movements and is flexibly linked to contexts associated with learning. This finding indicates that inter-area co-fluctuations can be a signature of dynamic top-down influences that support complex behavior and its adaptation.