Lipid kinases VPS34 and PIKfyve coordinate a phosphoinositide cascade to regulate Retriever-mediated recycling on endosomes

  1. Sai Srinivas Panapakkam Giridharan
  2. Guangming Luo
  3. Pilar Rivero-Rios
  4. Noah Steinfeld
  5. Helene Tronchere
  6. Amika Singla
  7. Ezra Burstein
  8. Daniel D Billadeau
  9. Michael A Sutton
  10. Lois S Weisman  Is a corresponding author
  1. University of Michigan-Ann Arbor, United States
  2. INSERM U1048 I2MC, France
  3. The University of Texas Southwestern Medical Center, United States
  4. Mayo Clinic, United States

Abstract

Cell-surface receptors control how cells respond to their environment. Many cell-surface receptors recycle from endosomes to the plasma membrane via a recently discovered pathway, which includes sorting-nexin SNX17, Retriever, WASH and CCC complexes. Here, using mammalian cells, we discover that PIKfyve and its upstream PI3-kinase VPS34 positively regulate this pathway. VPS34 produces PI3P, which is the substrate for PIKfyve to generate PI3,5P2. We show that PIKfyve controls recycling of cargoes including integrins, receptors that control cell migration. Furthermore, endogenous PIKfyve colocalizes with SNX17, Retriever, WASH and CCC complexes on endosomes. Importantly, PIKfyve inhibition results displacement of Retriever and CCC from endosomes. In addition, we show that recruitment of SNX17 is an early step and requires VPS34. These discoveries suggest that VPS34 and PIKfyve coordinate an ordered pathway to regulate recycling from endosomes and suggest how PIKfyve functions in cell migration.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Sai Srinivas Panapakkam Giridharan

    Department of Cell and Developmental Biology, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Guangming Luo

    Department of Cell and Developmental Biology, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Pilar Rivero-Rios

    Department of Cell and Developmental Biology, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Noah Steinfeld

    Department of Cell and Developmental Biology, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Helene Tronchere

    INSERM U1048 I2MC, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Amika Singla

    Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ezra Burstein

    Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4341-6367
  8. Daniel D Billadeau

    Division of Oncology Research, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Michael A Sutton

    Molecular and Integrative Physiology, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1593-727X
  10. Lois S Weisman

    Department of Cell and Developmental Biology, University of Michigan-Ann Arbor, Ann Arbor, United States
    For correspondence
    lweisman@umich.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7740-9785

Funding

National Institute of Neurological Disorders and Stroke (Research Project Grant R01 NS064015)

  • Lois S Weisman

National Institute of Neurological Disorders and Stroke (Research Project Grant R01-NS099340)

  • Lois S Weisman

National Institute of Diabetes and Digestive and Kidney Diseases (Research Project Grant R01-DK107733)

  • Ezra Burstein
  • Daniel D Billadeau

American Heart Association (Postdoctoral Fellowship 14POST20480137)

  • Sai Srinivas Panapakkam Giridharan

American Heart Association (Postdoctoral Fellowship 19POST34450253)

  • Guangming Luo

University of Michigan Protein Folding Diseases Fast Forward Initiative (Pilot grant)

  • Lois S Weisman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#A3114-01) of the University of Michigan. The protocol was approved by the Committee on the Ethics of Animal Experiments of the University of Michigan (Approval # PRO00010100).

Reviewing Editor

  1. Suzanne R Pfeffer, Stanford University School of Medicine, United States

Publication history

  1. Received: April 23, 2021
  2. Preprint posted: May 25, 2021 (view preprint)
  3. Accepted: January 17, 2022
  4. Accepted Manuscript published: January 18, 2022 (version 1)
  5. Version of Record published: February 4, 2022 (version 2)

Copyright

© 2022, Giridharan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,516
    Page views
  • 341
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sai Srinivas Panapakkam Giridharan
  2. Guangming Luo
  3. Pilar Rivero-Rios
  4. Noah Steinfeld
  5. Helene Tronchere
  6. Amika Singla
  7. Ezra Burstein
  8. Daniel D Billadeau
  9. Michael A Sutton
  10. Lois S Weisman
(2022)
Lipid kinases VPS34 and PIKfyve coordinate a phosphoinositide cascade to regulate Retriever-mediated recycling on endosomes
eLife 11:e69709.
https://doi.org/10.7554/eLife.69709

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Tsuyoshi Imasaki et al.
    Research Article

    Microtubules are dynamic polymers consisting of αβ-tubulin heterodimers. The initial polymerization process, called microtubule nucleation, occurs spontaneously via αβ-tubulin. Since a large energy barrier prevents microtubule nucleation in cells, the γ-tubulin ring complex is recruited to the centrosome to overcome the nucleation barrier. However, a considerable number of microtubules can polymerize independently of the centrosome in various cell types. Here, we present evidence that the minus-end-binding calmodulin-regulated spectrin-associated protein 2 (CAMSAP2) serves as a strong nucleator for microtubule formation by significantly reducing the nucleation barrier. CAMSAP2 co-condensates with αβ-tubulin via a phase separation process, producing plenty of nucleation intermediates. Microtubules then radiate from the co-condensates, resulting in aster-like structure formation. CAMSAP2 localizes at the co-condensates and decorates the radiating microtubule lattices to some extent. Taken together, these in vitro findings suggest that CAMSAP2 supports microtubule nucleation and growth by organizing a nucleation centre as well as by stabilizing microtubule intermediates and growing microtubules.

    1. Cell Biology
    2. Developmental Biology
    Katelyn J Hoff et al.
    Research Article Updated

    Heterozygous, missense mutations in α- or β-tubulin genes are associated with a wide range of human brain malformations, known as tubulinopathies. We seek to understand whether a mutation’s impact at the molecular and cellular levels scale with the severity of brain malformation. Here, we focus on two mutations at the valine 409 residue of TUBA1A, V409I, and V409A, identified in patients with pachygyria or lissencephaly, respectively. We find that ectopic expression of TUBA1A-V409I/A mutants disrupt neuronal migration in mice and promote excessive neurite branching and a decrease in the number of neurite retraction events in primary rat neuronal cultures. These neuronal phenotypes are accompanied by increased microtubule acetylation and polymerization rates. To determine the molecular mechanisms, we modeled the V409I/A mutants in budding yeast and found that they promote intrinsically faster microtubule polymerization rates in cells and in reconstitution experiments with purified tubulin. In addition, V409I/A mutants decrease the recruitment of XMAP215/Stu2 to plus ends in budding yeast and ablate tubulin binding to TOG (tumor overexpressed gene) domains. In each assay tested, the TUBA1A-V409I mutant exhibits an intermediate phenotype between wild type and the more severe TUBA1A-V409A, reflecting the severity observed in brain malformations. Together, our data support a model in which the V409I/A mutations disrupt microtubule regulation typically conferred by XMAP215 proteins during neuronal morphogenesis and migration, and this impact on tubulin activity at the molecular level scales with the impact at the cellular and tissue levels.