Lipid kinases VPS34 and PIKfyve coordinate a phosphoinositide cascade to regulate Retriever-mediated recycling on endosomes

  1. Sai Srinivas Panapakkam Giridharan
  2. Guangming Luo
  3. Pilar Rivero-Rios
  4. Noah Steinfeld
  5. Helene Tronchere
  6. Amika Singla
  7. Ezra Burstein
  8. Daniel D Billadeau
  9. Michael A Sutton
  10. Lois S Weisman  Is a corresponding author
  1. University of Michigan-Ann Arbor, United States
  2. INSERM U1048 I2MC, France
  3. The University of Texas Southwestern Medical Center, United States
  4. Mayo Clinic, United States

Abstract

Cell-surface receptors control how cells respond to their environment. Many cell-surface receptors recycle from endosomes to the plasma membrane via a recently discovered pathway, which includes sorting-nexin SNX17, Retriever, WASH and CCC complexes. Here, using mammalian cells, we discover that PIKfyve and its upstream PI3-kinase VPS34 positively regulate this pathway. VPS34 produces PI3P, which is the substrate for PIKfyve to generate PI3,5P2. We show that PIKfyve controls recycling of cargoes including integrins, receptors that control cell migration. Furthermore, endogenous PIKfyve colocalizes with SNX17, Retriever, WASH and CCC complexes on endosomes. Importantly, PIKfyve inhibition results displacement of Retriever and CCC from endosomes. In addition, we show that recruitment of SNX17 is an early step and requires VPS34. These discoveries suggest that VPS34 and PIKfyve coordinate an ordered pathway to regulate recycling from endosomes and suggest how PIKfyve functions in cell migration.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Sai Srinivas Panapakkam Giridharan

    Department of Cell and Developmental Biology, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Guangming Luo

    Department of Cell and Developmental Biology, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Pilar Rivero-Rios

    Department of Cell and Developmental Biology, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Noah Steinfeld

    Department of Cell and Developmental Biology, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Helene Tronchere

    INSERM U1048 I2MC, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Amika Singla

    Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ezra Burstein

    Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4341-6367
  8. Daniel D Billadeau

    Division of Oncology Research, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Michael A Sutton

    Molecular and Integrative Physiology, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1593-727X
  10. Lois S Weisman

    Department of Cell and Developmental Biology, University of Michigan-Ann Arbor, Ann Arbor, United States
    For correspondence
    lweisman@umich.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7740-9785

Funding

National Institute of Neurological Disorders and Stroke (Research Project Grant R01 NS064015)

  • Lois S Weisman

National Institute of Neurological Disorders and Stroke (Research Project Grant R01-NS099340)

  • Lois S Weisman

National Institute of Diabetes and Digestive and Kidney Diseases (Research Project Grant R01-DK107733)

  • Ezra Burstein
  • Daniel D Billadeau

American Heart Association (Postdoctoral Fellowship 14POST20480137)

  • Sai Srinivas Panapakkam Giridharan

American Heart Association (Postdoctoral Fellowship 19POST34450253)

  • Guangming Luo

University of Michigan Protein Folding Diseases Fast Forward Initiative (Pilot grant)

  • Lois S Weisman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#A3114-01) of the University of Michigan. The protocol was approved by the Committee on the Ethics of Animal Experiments of the University of Michigan (Approval # PRO00010100).

Copyright

© 2022, Giridharan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,602
    views
  • 718
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sai Srinivas Panapakkam Giridharan
  2. Guangming Luo
  3. Pilar Rivero-Rios
  4. Noah Steinfeld
  5. Helene Tronchere
  6. Amika Singla
  7. Ezra Burstein
  8. Daniel D Billadeau
  9. Michael A Sutton
  10. Lois S Weisman
(2022)
Lipid kinases VPS34 and PIKfyve coordinate a phosphoinositide cascade to regulate Retriever-mediated recycling on endosomes
eLife 11:e69709.
https://doi.org/10.7554/eLife.69709

Share this article

https://doi.org/10.7554/eLife.69709

Further reading

    1. Cell Biology
    Zewei Zhao, Longyun Hu ... Zhonghan Yang
    Research Article

    The induction of adipose thermogenesis plays a critical role in maintaining body temperature and improving metabolic homeostasis to combat obesity. β3-adrenoceptor (β3-AR) is widely recognized as a canonical β-adrenergic G-protein-coupled receptor (GPCR) that plays a crucial role in mediating adipose thermogenesis in mice. Nonetheless, the limited expression of β3-AR in human adipocytes restricts its clinical application. The objective of this study was to identify a GPCR that is highly expressed in human adipocytes and to explore its potential involvement in adipose thermogenesis. Our research findings have demonstrated that the adhesion G-protein-coupled receptor A3 (ADGRA3), an orphan GPCR, plays a significant role in adipose thermogenesis through its constitutively active effects. ADGRA3 exhibited high expression levels in human adipocytes and mouse brown fat. Furthermore, the knockdown of Adgra3 resulted in an exacerbated obese phenotype and a reduction in the expression of thermogenic markers in mice. Conversely, Adgra3 overexpression activated the adipose thermogenic program and improved metabolic homeostasis in mice without exogenous ligand. We found that ADGRA3 facilitates the biogenesis of beige human or mouse adipocytes in vitro. Moreover, hesperetin was identified as a potential agonist of ADGRA3, capable of inducing adipocyte browning and ameliorating insulin resistance in mice. In conclusion, our study demonstrated that the overexpression of constitutively active ADGRA3 or the activation of ADGRA3 by hesperetin can induce adipocyte browning by Gs-PKA-CREB axis. These findings indicate that the utilization of hesperetin and the selective overexpression of ADGRA3 in adipose tissue could serve as promising therapeutic strategies in the fight against obesity.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bethany M Bartlett, Yatendra Kumar ... Wendy A Bickmore
    Research Article Updated

    During oncogene-induced senescence there are striking changes in the organisation of heterochromatin in the nucleus. This is accompanied by activation of a pro-inflammatory gene expression programme – the senescence-associated secretory phenotype (SASP) – driven by transcription factors such as NF-κB. The relationship between heterochromatin re-organisation and the SASP has been unclear. Here, we show that TPR, a protein of the nuclear pore complex basket required for heterochromatin re-organisation during senescence, is also required for the very early activation of NF-κB signalling during the stress-response phase of oncogene-induced senescence. This is prior to activation of the SASP and occurs without affecting NF-κB nuclear import. We show that TPR is required for the activation of innate immune signalling at these early stages of senescence and we link this to the formation of heterochromatin-enriched cytoplasmic chromatin fragments thought to bleb off from the nuclear periphery. We show that HMGA1 is also required for cytoplasmic chromatin fragment formation. Together these data suggest that re-organisation of heterochromatin is involved in altered structural integrity of the nuclear periphery during senescence, and that this can lead to activation of cytoplasmic nucleic acid sensing, NF-κB signalling, and activation of the SASP.