Functional independence of endogenous µ- and δ-opioid receptors co-expressed in cholinergic interneurons

  1. Seksiri Arttamangkul  Is a corresponding author
  2. Emily J Platt
  3. James Carroll
  4. David Farrens
  1. Oregon Health and Science University, United States

Abstract

Class A G protein-coupled receptors (GPCRs) normally function as monomers, although evidence from heterologous expression systems suggests they may sometimes form homodimers and/or heterodimers. This study aims to evaluate possible functional interplay of endogenous µ- and d-Opioid receptors (MORs and DORs) in mouse neurons. Detecting GPCR dimers in native tissues however has been challenging. Previously, MORs and DORs co-expressed in transfected cells have been reported to form heterodimers, and their possible co-localization in neurons has been studied in knock-in mice expressing genetically engineered receptors fused to fluorescent proteins. Here we find that single cholinergic neurons in the mouse striatum endogenously express both MORs and DORs. The receptors on neurons from live brain slices were fluorescently labeled in live brain slices with a ligand-directed labeling reagent, NAI-A594. The selective activation of MORs and DORs, with DAMGO (µ-agonist) and deltorphin (d-agonist) inhibited spontaneous firing in all cells examined. In the continued presence of agonist, the firing rate returned to baseline as the result of receptor desensitization with the application of deltorphin but was less observed with the application of DAMGO. In addition, agonist-induced internalization of DORs but not MORs was detected. When MORs and DORs were activated simultaneously with [Met5]-enkephalin, desensitization of MORs was facilitated but internalization was not increased. Together, these results indicate that while MORs and DORs are expressed in single striatal cholinergic interneurons, the two receptors function independently.

Data availability

All data generated or analyzed during this study are included in the manuscript.

Article and author information

Author details

  1. Seksiri Arttamangkul

    Vollum Institute, Oregon Health and Science University, Portland, United States
    For correspondence
    arttaman@ohsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8815-5124
  2. Emily J Platt

    Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8128-4751
  3. James Carroll

    Surgery, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9264-4502
  4. David Farrens

    Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute on Drug Abuse (DA048136)

  • Seksiri Arttamangkul

National Institute on Drug Abuse (DA048136)

  • David Farrens

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal uses were conducted in accordance with the National Institutes of Health guidelines and with approval from the Institutional Animal Care and Use Committee (IACUC) protocol #IP00000160 of the Oregon Health & Science University. Rats and mice were anesthetized with isofluorane before euthanized with minimal suffering.

Copyright

© 2021, Arttamangkul et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,239
    views
  • 255
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Seksiri Arttamangkul
  2. Emily J Platt
  3. James Carroll
  4. David Farrens
(2021)
Functional independence of endogenous µ- and δ-opioid receptors co-expressed in cholinergic interneurons
eLife 10:e69740.
https://doi.org/10.7554/eLife.69740

Share this article

https://doi.org/10.7554/eLife.69740

Further reading

    1. Neuroscience
    Suelen Pereira, Ivan Tomsic ... Mychael V Lourenco
    Insight

    A dysfunctional signaling pathway in the hippocampus has been linked to chronic pain-related memory impairment in mice.

    1. Neuroscience
    Ilya A Rybak, Natalia A Shevtsova ... Alain Frigon
    Research Advance

    Locomotion is controlled by spinal circuits that interact with supraspinal drives and sensory feedback from the limbs. These sensorimotor interactions are disrupted following spinal cord injury. The thoracic lateral hemisection represents an experimental model of an incomplete spinal cord injury, where connections between the brain and spinal cord are abolished on one side of the cord. To investigate the effects of such an injury on the operation of the spinal locomotor network, we used our computational model of cat locomotion recently published in eLife (Rybak et al., 2024) to investigate and predict changes in cycle and phase durations following a thoracic lateral hemisection during treadmill locomotion in tied-belt (equal left-right speeds) and split-belt (unequal left-right speeds) conditions. In our simulations, the ‘hemisection’ was always applied to the right side. Based on our model, we hypothesized that following hemisection the contralesional (‘intact’, left) side of the spinal network is mostly controlled by supraspinal drives, whereas the ipsilesional (‘hemisected’, right) side is mostly controlled by somatosensory feedback. We then compared the simulated results with those obtained during experiments in adult cats before and after a mid-thoracic lateral hemisection on the right side in the same locomotor conditions. Our experimental results confirmed many effects of hemisection on cat locomotion predicted by our simulations. We show that having the ipsilesional hindlimb step on the slow belt, but not the fast belt, during split-belt locomotion substantially reduces the effects of lateral hemisection. The model provides explanations for changes in temporal characteristics of hindlimb locomotion following hemisection based on altered interactions between spinal circuits, supraspinal drives, and somatosensory feedback.