Transcriptomic encoding of sensorimotor transformation in the midbrain

  1. Zhiyong Xie
  2. Mengdi Wang
  3. Zeyuan Liu
  4. Congping Shang
  5. Changjiang Zhang
  6. Le Sun
  7. Huating Gu
  8. Gengxin Ran
  9. Qing Pei
  10. Qiang Ma
  11. Meizhu Huang
  12. Junjing Zhang
  13. Rui Lin
  14. Youtong Zhou
  15. Jiyao Zhang
  16. Miao Zhao
  17. Minmin Luo
  18. Qian Wu  Is a corresponding author
  19. Peng Cao  Is a corresponding author
  20. Xiaoqun Wang  Is a corresponding author
  1. National Institute of Biological Sciences, China
  2. Institute of Biophysics, Chinese Academy of Sciences, China
  3. Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), China
  4. Capital Medical University, China
  5. Beijing Normal University, China
  6. National Institute of Biological Science, China
  7. National Institute of Biological Sciences, Beijing, China

Abstract

Sensorimotor transformation, a process that converts sensory stimuli into motor actions, is critical for the brain to initiate behaviors. Although the circuitry involved in sensorimotor transformation has been well delineated, the molecular logic behind this process remains poorly understood. Here, we performed high-throughput and circuit-specific single-cell transcriptomic analyses of neurons in the superior colliculus (SC), a midbrain structure implicated in early sensorimotor transformation. We found that SC neurons in distinct laminae express discrete marker genes. Of particular interest, Cbln2 and Pitx2 are key markers that define glutamatergic projection neurons in the optic nerve (Op) and intermediate gray (InG) layers, respectively. The Cbln2+ neurons responded to visual stimuli mimicking cruising predators, while the Pitx2+ neurons encoded prey-derived vibrissal tactile cues. By forming distinct input and output connections with other brain areas, these neuronal subtypes independently mediate behaviors of predator avoidance and prey capture. Our results reveal that, in the midbrain, sensorimotor transformation for different behaviors may be performed by separate circuit modules that are molecularly defined by distinct transcriptomic codes.

Data availability

The scRNA-seq data used in this study have been deposited in the Gene Expression Omnibus (GEO) under accession numbers GSE162404 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE162404).

The following data sets were generated

Article and author information

Author details

  1. Zhiyong Xie

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Mengdi Wang

    Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Zeyuan Liu

    Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0007-9874
  4. Congping Shang

    Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Changjiang Zhang

    Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Le Sun

    Capital Medical University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Huating Gu

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Gengxin Ran

    Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Qing Pei

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Qiang Ma

    Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Meizhu Huang

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Junjing Zhang

    Beijing Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Rui Lin

    National Institute of Biological Science, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  14. Youtong Zhou

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  15. Jiyao Zhang

    Beijing Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  16. Miao Zhao

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  17. Minmin Luo

    National Institute of Biological Science, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3535-6624
  18. Qian Wu

    Beijing Normal University, Beijing, China
    For correspondence
    qianwu@ibp.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
  19. Peng Cao

    National Institute of Biological Sciences, Beijing, China
    For correspondence
    caopeng@nibs.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
  20. Xiaoqun Wang

    Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    For correspondence
    xiaoqunwang@ibp.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3440-2617

Funding

Ministry of Science and Technology of the People's Republic of China (2019YFA0110100; 2017YFA0103303)

  • Xiaoqun Wang

Ministry of Science and Technology of the People's Republic of China (2017YFA0102601)

  • Qian Wu

Chinese Academy of Sciences (XDB32010100)

  • Xiaoqun Wang

National Natural Science Foundation of China (31925019)

  • Peng Cao

National Natural Science Foundation of China (31771140; 81891001)

  • Xiaoqun Wang

BUAA-CCMU Big Data and Precision Medicine Advanced Innovation Center Project (BHME-2019001)

  • Xiaoqun Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures were conducted following protocols approved by the Administrative Panel on Laboratory Animal Care at the National Institute of Biological Sciences, Beijing (NIBS) (NIBS2021M0006) and Institute of Biophysics, Chinese Academy of Sciences (SYXK2019015).

Copyright

© 2021, Xie et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,292
    views
  • 791
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhiyong Xie
  2. Mengdi Wang
  3. Zeyuan Liu
  4. Congping Shang
  5. Changjiang Zhang
  6. Le Sun
  7. Huating Gu
  8. Gengxin Ran
  9. Qing Pei
  10. Qiang Ma
  11. Meizhu Huang
  12. Junjing Zhang
  13. Rui Lin
  14. Youtong Zhou
  15. Jiyao Zhang
  16. Miao Zhao
  17. Minmin Luo
  18. Qian Wu
  19. Peng Cao
  20. Xiaoqun Wang
(2021)
Transcriptomic encoding of sensorimotor transformation in the midbrain
eLife 10:e69825.
https://doi.org/10.7554/eLife.69825

Share this article

https://doi.org/10.7554/eLife.69825

Further reading

    1. Developmental Biology
    2. Neuroscience
    Changtian Ye, Ryan Ho ... James Q Zheng
    Research Article

    Environmental insults, including mild head trauma, significantly increase the risk of neurodegeneration. However, it remains challenging to establish a causative connection between early-life exposure to mild head trauma and late-life emergence of neurodegenerative deficits, nor do we know how sex and age compound the outcome. Using a Drosophila model, we demonstrate that exposure to mild head trauma causes neurodegenerative conditions that emerge late in life and disproportionately affect females. Increasing age-at-injury further exacerbates this effect in a sexually dimorphic manner. We further identify sex peptide signaling as a key factor in female susceptibility to post-injury brain deficits. RNA sequencing highlights a reduction in innate immune defense transcripts specifically in mated females during late life. Our findings establish a causal relationship between early head trauma and late-life neurodegeneration, emphasizing sex differences in injury response and the impact of age-at-injury. Finally, our findings reveal that reproductive signaling adversely impacts female response to mild head insults and elevates vulnerability to late-life neurodegeneration.

    1. Neuroscience
    Iustin V Tabarean
    Research Article

    Neurotensin (Nts) is a neuropeptide acting as a neuromodulator in the brain. Pharmacological studies have identified Nts as a potent hypothermic agent. The medial preoptic area, a region that plays an important role in the control of thermoregulation, contains a high density of neurotensinergic neurons and Nts receptors. The conditions in which neurotensinergic neurons play a role in thermoregulation are not known. In this study, optogenetic stimulation of preoptic Nts neurons induced a small hyperthermia. In vitro, optogenetic stimulation of preoptic Nts neurons resulted in synaptic release of GABA and net inhibition of the preoptic pituitary adenylate cyclase-activating polypeptide (Adcyap1) neurons firing activity. GABA-A receptor antagonist or genetic deletion of Slc32a1 (VGAT) in Nts neurons unmasked also an excitatory effect that was blocked by a Nts receptor 1 antagonist. Stimulation of preoptic Nts neurons lacking Slc32a1 resulted in excitation of Adcyap1 neurons and hypothermia. Mice lacking Slc32a1 expression in Nts neurons presented changes in the fever response and in the responses to heat or cold exposure as well as an altered circadian rhythm of body temperature. Chemogenetic activation of all Nts neurons in the brain induced a 4–5°C hypothermia, which could be blocked by Nts receptor antagonists in the preoptic area. Chemogenetic activation of preoptic neurotensinergic projections resulted in robust excitation of preoptic Adcyap1 neurons. Taken together, our data demonstrate that endogenously released Nts can induce potent hypothermia and that excitation of preoptic Adcyap1 neurons is the cellular mechanism that triggers this response.