Transcriptomic encoding of sensorimotor transformation in the midbrain

  1. Zhiyong Xie
  2. Mengdi Wang
  3. Zeyuan Liu
  4. Congping Shang
  5. Changjiang Zhang
  6. Le Sun
  7. Huating Gu
  8. Gengxin Ran
  9. Qing Pei
  10. Qiang Ma
  11. Meizhu Huang
  12. Junjing Zhang
  13. Rui Lin
  14. Youtong Zhou
  15. Jiyao Zhang
  16. Miao Zhao
  17. Minmin Luo
  18. Qian Wu  Is a corresponding author
  19. Peng Cao  Is a corresponding author
  20. Xiaoqun Wang  Is a corresponding author
  1. National Institute of Biological Sciences, China
  2. Institute of Biophysics, Chinese Academy of Sciences, China
  3. Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), China
  4. Capital Medical University, China
  5. Beijing Normal University, China
  6. National Institute of Biological Science, China
  7. National Institute of Biological Sciences, Beijing, China

Abstract

Sensorimotor transformation, a process that converts sensory stimuli into motor actions, is critical for the brain to initiate behaviors. Although the circuitry involved in sensorimotor transformation has been well delineated, the molecular logic behind this process remains poorly understood. Here, we performed high-throughput and circuit-specific single-cell transcriptomic analyses of neurons in the superior colliculus (SC), a midbrain structure implicated in early sensorimotor transformation. We found that SC neurons in distinct laminae express discrete marker genes. Of particular interest, Cbln2 and Pitx2 are key markers that define glutamatergic projection neurons in the optic nerve (Op) and intermediate gray (InG) layers, respectively. The Cbln2+ neurons responded to visual stimuli mimicking cruising predators, while the Pitx2+ neurons encoded prey-derived vibrissal tactile cues. By forming distinct input and output connections with other brain areas, these neuronal subtypes independently mediate behaviors of predator avoidance and prey capture. Our results reveal that, in the midbrain, sensorimotor transformation for different behaviors may be performed by separate circuit modules that are molecularly defined by distinct transcriptomic codes.

Data availability

The scRNA-seq data used in this study have been deposited in the Gene Expression Omnibus (GEO) under accession numbers GSE162404 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE162404).

The following data sets were generated

Article and author information

Author details

  1. Zhiyong Xie

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Mengdi Wang

    Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Zeyuan Liu

    Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0007-9874
  4. Congping Shang

    Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Changjiang Zhang

    Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Le Sun

    Capital Medical University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Huating Gu

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Gengxin Ran

    Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Qing Pei

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Qiang Ma

    Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Meizhu Huang

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Junjing Zhang

    Beijing Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Rui Lin

    National Institute of Biological Science, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  14. Youtong Zhou

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  15. Jiyao Zhang

    Beijing Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  16. Miao Zhao

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  17. Minmin Luo

    National Institute of Biological Science, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3535-6624
  18. Qian Wu

    Beijing Normal University, Beijing, China
    For correspondence
    qianwu@ibp.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
  19. Peng Cao

    National Institute of Biological Sciences, Beijing, China
    For correspondence
    caopeng@nibs.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
  20. Xiaoqun Wang

    Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    For correspondence
    xiaoqunwang@ibp.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3440-2617

Funding

Ministry of Science and Technology of the People's Republic of China (2019YFA0110100; 2017YFA0103303)

  • Xiaoqun Wang

Ministry of Science and Technology of the People's Republic of China (2017YFA0102601)

  • Qian Wu

Chinese Academy of Sciences (XDB32010100)

  • Xiaoqun Wang

National Natural Science Foundation of China (31925019)

  • Peng Cao

National Natural Science Foundation of China (31771140; 81891001)

  • Xiaoqun Wang

BUAA-CCMU Big Data and Precision Medicine Advanced Innovation Center Project (BHME-2019001)

  • Xiaoqun Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures were conducted following protocols approved by the Administrative Panel on Laboratory Animal Care at the National Institute of Biological Sciences, Beijing (NIBS) (NIBS2021M0006) and Institute of Biophysics, Chinese Academy of Sciences (SYXK2019015).

Copyright

© 2021, Xie et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,439
    views
  • 807
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhiyong Xie
  2. Mengdi Wang
  3. Zeyuan Liu
  4. Congping Shang
  5. Changjiang Zhang
  6. Le Sun
  7. Huating Gu
  8. Gengxin Ran
  9. Qing Pei
  10. Qiang Ma
  11. Meizhu Huang
  12. Junjing Zhang
  13. Rui Lin
  14. Youtong Zhou
  15. Jiyao Zhang
  16. Miao Zhao
  17. Minmin Luo
  18. Qian Wu
  19. Peng Cao
  20. Xiaoqun Wang
(2021)
Transcriptomic encoding of sensorimotor transformation in the midbrain
eLife 10:e69825.
https://doi.org/10.7554/eLife.69825

Share this article

https://doi.org/10.7554/eLife.69825

Further reading

    1. Neuroscience
    John P Grogan, Matthias Raemaekers ... Sanjay G Manohar
    Research Article

    Motivation depends on dopamine, but might be modulated by acetylcholine which influences dopamine release in the striatum, and amplifies motivation in animal studies. A corresponding effect in humans would be important clinically, since anticholinergic drugs are frequently used in Parkinson’s disease, a condition that can also disrupt motivation. Reward and dopamine make us more ready to respond, as indexed by reaction times (RT), and move faster, sometimes termed vigour. These effects may be controlled by preparatory processes that can be tracked using electroencephalography (EEG). We measured vigour in a placebo-controlled, double-blinded study of trihexyphenidyl (THP), a muscarinic antagonist, with an incentivised eye movement task and EEG. Participants responded faster and with greater vigour when incentives were high, but THP blunted these motivational effects, suggesting that muscarinic receptors facilitate invigoration by reward. Preparatory EEG build-up (contingent negative variation [CNV]) was strengthened by high incentives and by muscarinic blockade, although THP reduced the incentive effect. The amplitude of preparatory activity predicted both vigour and RT, although over distinct scalp regions; frontal activity predicted vigour, whereas a larger, earlier, central component predicted RT. The incentivisation of RT was partly mediated by the CNV, though vigour was not. Moreover, the CNV mediated the drug’s effect on dampening incentives, suggesting that muscarinic receptors underlie the motivational influence on this preparatory activity. Taken together, these findings show that a muscarinic blocker impairs motivated action in healthy people, and that medial frontal preparatory neural activity mediates this for RT.

    1. Neuroscience
    Samyogita Hardikar, Bronte Mckeown ... Jonathan Smallwood
    Research Article

    Complex macro-scale patterns of brain activity that emerge during periods of wakeful rest provide insight into the organisation of neural function, how these differentiate individuals based on their traits, and the neural basis of different types of self-generated thoughts. Although brain activity during wakeful rest is valuable for understanding important features of human cognition, its unconstrained nature makes it difficult to disentangle neural features related to personality traits from those related to the thoughts occurring at rest. Our study builds on recent perspectives from work on ongoing conscious thought that highlight the interactions between three brain networks – ventral and dorsal attention networks, as well as the default mode network. We combined measures of personality with state-of-the-art indices of ongoing thoughts at rest and brain imaging analysis and explored whether this ‘tri-partite’ view can provide a framework within which to understand the contribution of states and traits to observed patterns of neural activity at rest. To capture macro-scale relationships between different brain systems, we calculated cortical gradients to describe brain organisation in a low-dimensional space. Our analysis established that for more introverted individuals, regions of the ventral attention network were functionally more aligned to regions of the somatomotor system and the default mode network. At the same time, a pattern of detailed self-generated thought was associated with a decoupling of regions of dorsal attention from regions in the default mode network. Our study, therefore, establishes that interactions between attention systems and the default mode network are important influences on ongoing thought at rest and highlights the value of integrating contemporary perspectives on conscious experience when understanding patterns of brain activity at rest.