CLAMP and Zelda function together to promote Drosophila zygotic genome activation

  1. Jingyue Duan  Is a corresponding author
  2. Leila Rieder
  3. Megan M Colonnetta
  4. Annie Huang
  5. Mary Mckenney
  6. Scott Watters
  7. Girish Deshpande,
  8. William Jordan
  9. Nicolas Fawzi
  10. Erica Larschan  Is a corresponding author
  1. Brown University, United States
  2. Emory University, United States
  3. Princeton University, United States

Abstract

During the essential and conserved process of zygotic genome activation (ZGA), chromatin accessibility must increase to promote transcription. Drosophila is a well-established model for defining mechanisms that drive ZGA. Zelda (ZLD) is a key pioneer transcription factor (TF) that promotes ZGA in the Drosophila embryo. However, many genomic loci that contain GA-rich motifs become accessible during ZGA independent of ZLD. Therefore, we hypothesized that other early TFs that function with ZLD have not yet been identified, especially those that are capable of binding to GA-rich motifs such as CLAMP. Here, we demonstrate that Drosophila embryonic development requires maternal CLAMP to: 1) activate zygotic transcription; 2) increase chromatin accessibility at promoters of specific genes that often encode other essential TFs; 3) enhance chromatin accessibility and facilitate ZLD occupancy at a subset of key embryonic promoters. Thus, CLAMP functions as a pioneer factor which plays a targeted yet essential role in ZGA.

Data availability

To review GEO accession GSE152613:Go to https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE152613Enter token ihevsmiqnxexrod into the box

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Jingyue Duan

    Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, United States
    For correspondence
    jd774@cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6416-2250
  2. Leila Rieder

    Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Megan M Colonnetta

    Department of Molecular Biology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5685-1670
  4. Annie Huang

    Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Mary Mckenney

    Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Scott Watters

    Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Girish Deshpande,

    MCB, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. William Jordan

    Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Nicolas Fawzi

    Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Erica Larschan

    Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, United States
    For correspondence
    erica_larschan@brown.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2484-4921

Funding

National Institute of General Medical Sciences (F32GM109663)

  • Leila Rieder

National Institute of General Medical Sciences (K99HD092625)

  • Leila Rieder

National Institute of General Medical Sciences (R00HD092625)

  • Leila Rieder

National Institute of General Medical Sciences (R35GM126994)

  • Erica Larschan

National Science Foundation (1845734)

  • Nicolas Fawzi

National Institute of General Medical Sciences (R01GM118530)

  • Nicolas Fawzi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Duan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,853
    views
  • 389
    downloads
  • 58
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jingyue Duan
  2. Leila Rieder
  3. Megan M Colonnetta
  4. Annie Huang
  5. Mary Mckenney
  6. Scott Watters
  7. Girish Deshpande,
  8. William Jordan
  9. Nicolas Fawzi
  10. Erica Larschan
(2021)
CLAMP and Zelda function together to promote Drosophila zygotic genome activation
eLife 10:e69937.
https://doi.org/10.7554/eLife.69937

Share this article

https://doi.org/10.7554/eLife.69937

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Jia-Ying Su, Yun-Lin Wang ... Chien-Ling Lin
    Research Article

    Untranslated regions (UTRs) contain crucial regulatory elements for RNA stability, translation and localization, so their integrity is indispensable for gene expression. Approximately 3.7% of genetic variants associated with diseases occur in UTRs, yet a comprehensive understanding of UTR variant functions remains limited due to inefficient experimental and computational assessment methods. To systematically evaluate the effects of UTR variants on RNA stability, we established a massively parallel reporter assay on 6555 UTR variants reported in human disease databases. We examined the RNA degradation patterns mediated by the UTR library in two cell lines, and then applied LASSO regression to model the influential regulators of RNA stability. We found that UA dinucleotides and UA-rich motifs are the most prominent destabilizing element. Gain of UA dinucleotide outlined mutant UTRs with reduced stability. Studies on endogenous transcripts indicate that high UA-dinucleotide ratios in UTRs promote RNA degradation. Conversely, elevated GC content and protein binding on UA dinucleotides protect high-UA RNA from degradation. Further analysis reveals polarized roles of UA-dinucleotide-binding proteins in RNA protection and degradation. Furthermore, the UA-dinucleotide ratio of both UTRs is a common characteristic of genes in innate immune response pathways, implying a coordinated stability regulation through UTRs at the transcriptomic level. We also demonstrate that stability-altering UTRs are associated with changes in biobank-based health indices, underscoring the importance of precise UTR regulation for wellness. Our study highlights the importance of RNA stability regulation through UTR primary sequences, paving the way for further exploration of their implications in gene networks and precision medicine.

    1. Genetics and Genomics
    Angela M Tuckowski, Safa Beydoun ... Scott F Leiser
    Research Article

    Flavin-containing monooxygenases (FMOs) are a conserved family of xenobiotic enzymes upregulated in multiple longevity interventions, including nematode and mouse models. Previous work supports that C. elegans fmo-2 promotes longevity, stress resistance, and healthspan by rewiring endogenous metabolism. However, there are five C. elegans FMOs and five mammalian FMOs, and it is not known whether promoting longevity and health benefits is a conserved role of this gene family. Here, we report that expression of C. elegans fmo-4 promotes lifespan extension and paraquat stress resistance downstream of both dietary restriction and inhibition of mTOR. We find that overexpression of fmo-4 in just the hypodermis is sufficient for these benefits, and that this expression significantly modifies the transcriptome. By analyzing changes in gene expression, we find that genes related to calcium signaling are significantly altered downstream of fmo-4 expression. Highlighting the importance of calcium homeostasis in this pathway, fmo-4 overexpressing animals are sensitive to thapsigargin, an ER stressor that inhibits calcium flux from the cytosol to the ER lumen. This calcium/fmo-4 interaction is solidified by data showing that modulating intracellular calcium with either small molecules or genetics can change expression of fmo-4 and/or interact with fmo-4 to affect lifespan and stress resistance. Further analysis supports a pathway where fmo-4 modulates calcium homeostasis downstream of activating transcription factor-6 (atf-6), whose knockdown induces and requires fmo-4 expression. Together, our data identify fmo-4 as a longevity-promoting gene whose actions interact with known longevity pathways and calcium homeostasis.