1. Genetics and Genomics
Download icon

CLAMP and Zelda function together to promote Drosophila zygotic genome activation

  1. Jingyue Duan  Is a corresponding author
  2. Leila Rieder
  3. Megan M Colonnetta
  4. Annie Huang
  5. Mary Mckenney
  6. Scott Watters
  7. Girish Deshpande,
  8. William Jordan
  9. Nicolas Fawzi
  10. Erica Larschan  Is a corresponding author
  1. Brown University, United States
  2. Emory University, United States
  3. Princeton University, United States
Research Article
  • Cited 0
  • Views 1,149
  • Annotations
Cite this article as: eLife 2021;10:e69937 doi: 10.7554/eLife.69937

Abstract

During the essential and conserved process of zygotic genome activation (ZGA), chromatin accessibility must increase to promote transcription. Drosophila is a well-established model for defining mechanisms that drive ZGA. Zelda (ZLD) is a key pioneer transcription factor (TF) that promotes ZGA in the Drosophila embryo. However, many genomic loci that contain GA-rich motifs become accessible during ZGA independent of ZLD. Therefore, we hypothesized that other early TFs that function with ZLD have not yet been identified, especially those that are capable of binding to GA-rich motifs such as CLAMP. Here, we demonstrate that Drosophila embryonic development requires maternal CLAMP to: 1) activate zygotic transcription; 2) increase chromatin accessibility at promoters of specific genes that often encode other essential TFs; 3) enhance chromatin accessibility and facilitate ZLD occupancy at a subset of key embryonic promoters. Thus, CLAMP functions as a pioneer factor which plays a targeted yet essential role in ZGA.

Data availability

To review GEO accession GSE152613:Go to https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE152613Enter token ihevsmiqnxexrod into the box

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Jingyue Duan

    Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, United States
    For correspondence
    jd774@cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6416-2250
  2. Leila Rieder

    Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Megan M Colonnetta

    Department of Molecular Biology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5685-1670
  4. Annie Huang

    Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Mary Mckenney

    Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Scott Watters

    Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Girish Deshpande,

    MCB, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. William Jordan

    Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Nicolas Fawzi

    Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Erica Larschan

    Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, United States
    For correspondence
    erica_larschan@brown.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2484-4921

Funding

National Institute of General Medical Sciences (F32GM109663)

  • Leila Rieder

National Institute of General Medical Sciences (K99HD092625)

  • Leila Rieder

National Institute of General Medical Sciences (R00HD092625)

  • Leila Rieder

National Institute of General Medical Sciences (R35GM126994)

  • Erica Larschan

National Science Foundation (1845734)

  • Nicolas Fawzi

National Institute of General Medical Sciences (R01GM118530)

  • Nicolas Fawzi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Yukiko M Yamashita, Whitehead Institute/MIT, United States

Publication history

  1. Preprint posted: July 15, 2020 (view preprint)
  2. Received: April 30, 2021
  3. Accepted: August 2, 2021
  4. Accepted Manuscript published: August 3, 2021 (version 1)
  5. Version of Record published: August 16, 2021 (version 2)

Copyright

© 2021, Duan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,149
    Page views
  • 146
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Genetics and Genomics
    Kevin R Costello et al.
    Research Article

    Transposable elements (TEs) are mobile genetic elements that make up a large fraction of mammalian genomes. While select TEs have been co-opted in host genomes to have function, the majority of these elements are epigenetically silenced by DNA methylation in somatic cells. However, some TEs in mice, including the Intracisternal A-particle (IAP) subfamily of retrotransposons, have been shown to display interindividual variation in DNA methylation. Recent work has revealed that IAP sequence differences and strain-specific KRAB zinc finger proteins (KZFPs) may influence the methylation state of these IAPs. However, the mechanisms underlying the establishment and maintenance of interindividual variability in DNA methylation still remain unclear. Here we report that sequence content and genomic context influence the likelihood that IAPs become variably methylated. IAPs that differ from consensus IAP sequences have altered KZFP recruitment that can lead to decreased KAP1 recruitment when in proximity of constitutively expressed genes. These variably methylated loci have a high CpG density, similar to CpG islands, and can be bound by ZF-CxxC proteins, providing a potential mechanism to maintain this permissive chromatin environment and protect from DNA methylation. These observations indicate that variably methylated IAPs escape silencing through both attenuation of KZFP binding and recognition by ZF-CxxC proteins to maintain a hypomethylated state.

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Krishna S Ghanta et al.
    Research Article

    Nuclease-directed genome editing is a powerful tool for investigating physiology and has great promise as a therapeutic approach to correct mutations that cause disease. In its most precise form, genome editing can use cellular homology-directed repair (HDR) pathways to insert information from an exogenously supplied DNA repair template (donor) directly into a targeted genomic location. Unfortunately, particularly for long insertions, toxicity and delivery considerations associated with repair template DNA can limit HDR efficacy. Here, we explore chemical modifications to both double-stranded and single-stranded DNA-repair templates. We describe 5′-terminal modifications, including in its simplest form the incorporation of triethylene glycol (TEG) moieties, that consistently increase the frequency of precision editing in the germlines of three animal models (Caenorhabditis elegans, zebrafish, mice) and in cultured human cells.