CLAMP and Zelda function together to promote Drosophila zygotic genome activation

  1. Jingyue Duan  Is a corresponding author
  2. Leila Rieder
  3. Megan M Colonnetta
  4. Annie Huang
  5. Mary Mckenney
  6. Scott Watters
  7. Girish Deshpande,
  8. William Jordan
  9. Nicolas Fawzi
  10. Erica Larschan  Is a corresponding author
  1. Brown University, United States
  2. Emory University, United States
  3. Princeton University, United States

Abstract

During the essential and conserved process of zygotic genome activation (ZGA), chromatin accessibility must increase to promote transcription. Drosophila is a well-established model for defining mechanisms that drive ZGA. Zelda (ZLD) is a key pioneer transcription factor (TF) that promotes ZGA in the Drosophila embryo. However, many genomic loci that contain GA-rich motifs become accessible during ZGA independent of ZLD. Therefore, we hypothesized that other early TFs that function with ZLD have not yet been identified, especially those that are capable of binding to GA-rich motifs such as CLAMP. Here, we demonstrate that Drosophila embryonic development requires maternal CLAMP to: 1) activate zygotic transcription; 2) increase chromatin accessibility at promoters of specific genes that often encode other essential TFs; 3) enhance chromatin accessibility and facilitate ZLD occupancy at a subset of key embryonic promoters. Thus, CLAMP functions as a pioneer factor which plays a targeted yet essential role in ZGA.

Data availability

To review GEO accession GSE152613:Go to https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE152613Enter token ihevsmiqnxexrod into the box

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Jingyue Duan

    Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, United States
    For correspondence
    jd774@cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6416-2250
  2. Leila Rieder

    Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Megan M Colonnetta

    Department of Molecular Biology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5685-1670
  4. Annie Huang

    Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Mary Mckenney

    Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Scott Watters

    Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Girish Deshpande,

    MCB, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. William Jordan

    Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Nicolas Fawzi

    Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Erica Larschan

    Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, United States
    For correspondence
    erica_larschan@brown.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2484-4921

Funding

National Institute of General Medical Sciences (F32GM109663)

  • Leila Rieder

National Institute of General Medical Sciences (K99HD092625)

  • Leila Rieder

National Institute of General Medical Sciences (R00HD092625)

  • Leila Rieder

National Institute of General Medical Sciences (R35GM126994)

  • Erica Larschan

National Science Foundation (1845734)

  • Nicolas Fawzi

National Institute of General Medical Sciences (R01GM118530)

  • Nicolas Fawzi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Yukiko M Yamashita, Whitehead Institute/MIT, United States

Version history

  1. Preprint posted: July 15, 2020 (view preprint)
  2. Received: April 30, 2021
  3. Accepted: August 2, 2021
  4. Accepted Manuscript published: August 3, 2021 (version 1)
  5. Version of Record published: August 16, 2021 (version 2)

Copyright

© 2021, Duan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,392
    views
  • 355
    downloads
  • 42
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jingyue Duan
  2. Leila Rieder
  3. Megan M Colonnetta
  4. Annie Huang
  5. Mary Mckenney
  6. Scott Watters
  7. Girish Deshpande,
  8. William Jordan
  9. Nicolas Fawzi
  10. Erica Larschan
(2021)
CLAMP and Zelda function together to promote Drosophila zygotic genome activation
eLife 10:e69937.
https://doi.org/10.7554/eLife.69937

Share this article

https://doi.org/10.7554/eLife.69937

Further reading

    1. Genetics and Genomics
    Samuel Pattillo Smith, Gregory Darnell ... Lorin Crawford
    Research Article

    LD score regression (LDSC) is a method to estimate narrow-sense heritability from genome-wide association study (GWAS) summary statistics alone, making it a fast and popular approach. In this work, we present interaction-LD score (i-LDSC) regression: an extension of the original LDSC framework that accounts for interactions between genetic variants. By studying a wide range of generative models in simulations, and by re-analyzing 25 well-studied quantitative phenotypes from 349,468 individuals in the UK Biobank and up to 159,095 individuals in BioBank Japan, we show that the inclusion of a cis-interaction score (i.e. interactions between a focal variant and proximal variants) recovers genetic variance that is not captured by LDSC. For each of the 25 traits analyzed in the UK Biobank and BioBank Japan, i-LDSC detects additional variation contributed by genetic interactions. The i-LDSC software and its application to these biobanks represent a step towards resolving further genetic contributions of sources of non-additive genetic effects to complex trait variation.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Yannick Schäfer, Katja Palitzsch ... Jaanus Suurväli
    Research Article Updated

    Copy number variation in large gene families is well characterized for plant resistance genes, but similar studies are rare in animals. The zebrafish (Danio rerio) has hundreds of NLR immune genes, making this species ideal for studying this phenomenon. By sequencing 93 zebrafish from multiple wild and laboratory populations, we identified a total of 1513 NLRs, many more than the previously known 400. Approximately half of those are present in all wild populations, but only 4% were found in 80% or more of the individual fish. Wild fish have up to two times as many NLRs per individual and up to four times as many NLRs per population than laboratory strains. In contrast to the massive variability of gene copies, nucleotide diversity in zebrafish NLR genes is very low: around half of the copies are monomorphic and the remaining ones have very few polymorphisms, likely a signature of purifying selection.