A 3D adult zebrafish brain atlas (AZBA) for the digital age

  1. Justin W Kenney  Is a corresponding author
  2. Patrick E Steadman
  3. Olivia Young
  4. Meng Ting Shi
  5. Maris Polanco
  6. Saba Dubaishi
  7. Kristopher Covert
  8. Thomas Mueller
  9. Paul W Frankland  Is a corresponding author
  1. Wayne State University, United States
  2. The Hospital for Sick Children, Canada
  3. Kansas State University, United States
  4. University of Toronto, Canada

Abstract

Zebrafish have made significant contributions to our understanding of the vertebrate brain and the neural basis of behavior, earning a place as one of the most widely used model organisms in neuroscience. Their appeal arises from the marriage of low cost, early life transparency, and ease of genetic manipulation with a behavioral repertoire that becomes more sophisticated as animals transition from larvae to adults. To further enhance the use of adult zebrafish, we created the first fully segmented three-dimensional digital adult zebrafish brain atlas (AZBA). AZBA was built by combining tissue clearing, light-sheet fluorescence microscopy, and three-dimensional image registration of nuclear and antibody stains. These images were used to guide segmentation of the atlas into over 200 neuroanatomical regions comprising the entirety of the adult zebrafish brain. As an open source, online (azba.wayne.edu), updatable digital resource, AZBA will significantly enhance the use of adult zebrafish in furthering our understanding of vertebrate brain function in both health and disease.

Data availability

Data have been deposited in Dryad, accessible at: https://doi.org/10.5061/dryad.dfn2z351g

The following data sets were generated

Article and author information

Author details

  1. Justin W Kenney

    Department of Biological Sciences, Wayne State University, Detroit, United States
    For correspondence
    jkenney9@wayne.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8790-5184
  2. Patrick E Steadman

    The Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Olivia Young

    Department of Biological Sciences, Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Meng Ting Shi

    Department of Biological Sciences, Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Maris Polanco

    Department of Biological Sciences, Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Saba Dubaishi

    Department of Biological Sciences, Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Kristopher Covert

    Department of Biological Sciences, Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Thomas Mueller

    Kansas State University, Manhattan, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Paul W Frankland

    Department of Physiology, University of Toronto, Toronto, Canada
    For correspondence
    paul.frankland@sickkids.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1395-3586

Funding

Human Frontiers Science Program (LT000759/2014)

  • Justin W Kenney

National Institutes of Health (R35GM142566)

  • Justin W Kenney

Canadian Institute for Health Research (FDN143227)

  • Paul W Frankland

National Institutes of Health (P20GM113109)

  • Thomas Mueller

Human Frontiers Science Program (RGP0016/2019)

  • Thomas Mueller

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The study was performed in accordance with the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All procedures were approved by the animal care committee of The Hospital for Sick Children (protocol #0000047792).

Copyright

© 2021, Kenney et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,031
    views
  • 771
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Justin W Kenney
  2. Patrick E Steadman
  3. Olivia Young
  4. Meng Ting Shi
  5. Maris Polanco
  6. Saba Dubaishi
  7. Kristopher Covert
  8. Thomas Mueller
  9. Paul W Frankland
(2021)
A 3D adult zebrafish brain atlas (AZBA) for the digital age
eLife 10:e69988.
https://doi.org/10.7554/eLife.69988

Share this article

https://doi.org/10.7554/eLife.69988

Further reading

    1. Neuroscience
    Sainan Liu, Jiepin Huang ... Yan Yang
    Research Article

    Social relationships guide individual behavior and ultimately shape the fabric of society. Primates exhibit particularly complex, differentiated, and multidimensional social relationships, which form interwoven social networks, reflecting both individual social tendencies and specific dyadic interactions. How the patterns of behavior that underlie these social relationships emerge from moment-to-moment patterns of social information processing remains unclear. Here, we assess social relationships among a group of four monkeys, focusing on aggression, grooming, and proximity. We show that individual differences in social attention vary with individual differences in patterns of general social tendencies and patterns of individual engagement with specific partners. Oxytocin administration altered social attention and its relationship to both social tendencies and dyadic relationships, particularly grooming and aggression. Our findings link the dynamics of visual information sampling to the dynamics of primate social networks.

    1. Neuroscience
    Mihály Vöröslakos, Yunchang Zhang ... György Buzsáki
    Tools and Resources

    Brain states fluctuate between exploratory and consummatory phases of behavior. These state changes affect both internal computation and the organism’s responses to sensory inputs. Understanding neuronal mechanisms supporting exploratory and consummatory states and their switching requires experimental control of behavioral shifts and collecting sufficient amounts of brain data. To achieve this goal, we developed the ThermoMaze, which exploits the animal’s natural warmth-seeking homeostatic behavior. By decreasing the floor temperature and selectively heating unmarked areas, we observed that mice avoided the aversive state by exploring the maze and finding the warm spot. In its design, the ThermoMaze is analogous to the widely used water maze but without the inconvenience of a wet environment and, therefore, allows the collection of physiological data in many trials. We combined the ThermoMaze with electrophysiology recording, and report that spiking activity of hippocampal CA1 neurons during sharp-wave ripple events encode the position of mice. Thus, place-specific firing is not confined to locomotion and associated theta oscillations but persist during waking immobility and sleep at the same location. The ThermoMaze will allow for detailed studies of brain correlates of immobility, preparatory–consummatory transitions, and open new options for studying behavior-mediated temperature homeostasis.