Social contact patterns and implications for infectious disease transmission: a systematic review and meta-analysis of contact surveys
Abstract
Background: Transmission of respiratory pathogens such as SARS-CoV-2 depends on patterns of contact and mixing across populations. Understanding this is crucial to predict pathogen spread and the effectiveness of control efforts. Most analyses of contact patterns to date have focussed on high-income settings.
Methods: Here, we conduct a systematic review and individual-participant meta-analysis of surveys carried out in low- and middle-income countries and compare patterns of contact in these settings to surveys previously carried out in high-income countries. Using individual-level data from 28,503 participants and 413,069 contacts across 27 surveys we explored how contact characteristics (number, location, duration and whether physical) vary across income settings.
Results: Contact rates declined with age in high- and upper-middle-income settings, but not in low-income settings, where adults aged 65+ made similar numbers of contacts as younger individuals and mixed with all age-groups. Across all settings, increasing household size was a key determinant of contact frequency and characteristics, with low-income settings characterised by the largest, most intergenerational households. A higher proportion of contacts were made at home in low-income settings, and work/school contacts were more frequent in high-income strata. We also observed contrasting effects of gender across income-strata on the frequency, duration and type of contacts individuals made.
Conclusions: These differences in contact patterns between settings have material consequences for both spread of respiratory pathogens, as well as the effectiveness of different non-pharmaceutical interventions.
Funding: This work is primarily being funded by joint Centre funding from the UK Medical Research Council and DFID (MR/R015600/1).
Data availability
All individual-level data across all studies and analysis code are available at https://github.com/mrc-ide/contact_patterns (see Supplementary Text 4 for data dictionary).
-
Social mixing patterns in rural and urban areas of southern ChinaProceedings of the Royal Society B: Biological Sciences, doi: 10.1098/rspb.2014.0268.
-
Social contact data for China mainlandZenodo, doi: 10.5281/zenodo.3516113.
-
POLYMOD social contact dataZenodo, doi: 10.5281/zenodo.1059920.
-
Social contacts and the locations in which they occur as risk factors for influenza infectionProceedings of the Royal Society B: Biological Sciences, doi: 10.1098/rspb.2014.0709.
-
Temporal variation of human encounters and the number of locations in which they occur: a longitudinal study of Hong Kong residentsJournal of the Royal Society Interface, doi: 10.1098/rsif.2017.0838.
-
Social contact data for Hong KongZenodo, doi: 10.5281/zenodo.1165562.
-
Quantifying Age-Related Rates of Social Contact Using Diaries in a Rural Coastal Population of KenyaPlos One, doi: 10.1371/journal.pone.0104786.s007.
-
Social contact data for PeruZenodo, doi: 10.5281/zenodo.3874805.
-
Social contact data for RussiaZenodo, doi: 10.5281/zenodo.3874653.
-
Social contact data for ThailandZenodo, doi: 10.5281/zenodo.4086739.
-
Comparison of Contact Patterns Relevant for Transmission of Respiratory Pathogens in Thailand and the Netherlands Using Respondent-Driven SamplingPlos One, doi: 10.1371/journal.pone.0113711.s010.
-
Social contact data for VietnamZenodo, doi: 10.5281/zenodo.1289474.
-
Social contact data for Zambia and South Africa (CODA dataset)Zenodo, doi: 10.5281/zenodo.3874675.
-
Social contact data for ZimbabweZenodo, doi: 10.5281/zenodo.3886638.
Article and author information
Author details
Funding
joint Centre funding from the UK Medical Research Council and DFID (MR/R015600/1)
- Andria Mousa
- Peter Winskill
- Patrick Walker
- Charles Whittaker
Australian National Health and Medical Research Council
- Fiona M Russell
WHO
- Fiona M Russell
Bill & Melinda Gates Foundation
- Fiona M Russell
Wellcome Trust
- Fiona M Russell
DFAT
- Fiona M Russell
EPSRC through the EPSRC Centre for Doctoral Training in Modern Statistics and Statistical Machine Learning
- Mélodie Monod
University of Washington
- Jonathan D Sugimoto
US National Institutes of Health, NIAID
- Jonathan D Sugimoto
NIH (K24AI148459)
- Carlos G Grijalva
General Medical Sciences / National Institute of Health (U01-GM070749)
- Gail E Potter
UK foreign Commonwealth and Development Office
- Oliver John Watson
Emmes Company
- Gail E Potter
CUHK Direct grant for research (2019.020)
- Kin O Kwok
Health and Medical Research Fund (INF-CUHK-1,17160302,18170312)
- Kin O Kwok
General Research Fund (14112818)
- Kin O Kwok
Early Career Scheme (24104920)
- Kin O Kwok
Wellcome Trust (200861/Z/16/Z)
- Kin O Kwok
UK Medical Research Council. UK-funded award is part of the EDCTP2 programme supported by the EU (MR/P022081/1)
- Peter J Dodd
Australian Government Research Training Program Scholarship
- Eleanor FG Neal
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: All original studies included were approved by an institutional ethics review committee. Ethics approval was not required for the present study.
Copyright
This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
Metrics
-
- 2,631
- views
-
- 391
- downloads
-
- 47
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Epidemiology and Global Health
- Genetics and Genomics
Alzheimer’s disease (AD) is a complex degenerative disease of the central nervous system, and elucidating its pathogenesis remains challenging. In this study, we used the inverse-variance weighted (IVW) model as the major analysis method to perform hypothesis-free Mendelian randomization (MR) analysis on the data from MRC IEU OpenGWAS (18,097 exposure traits and 16 AD outcome traits), and conducted sensitivity analysis with six models, to assess the robustness of the IVW results, to identify various classes of risk or protective factors for AD, early-onset AD, and late-onset AD. We generated 400,274 data entries in total, among which the major analysis method of the IVW model consists of 73,129 records with 4840 exposure traits, which fall into 10 categories: Disease, Medical laboratory science, Imaging, Anthropometric, Treatment, Molecular trait, Gut microbiota, Past history, Family history, and Lifestyle trait. More importantly, a freely accessed online platform called MRAD (https://gwasmrad.com/mrad/) has been developed using the Shiny package with MR analysis results. Additionally, novel potential AD therapeutic targets (CD33, TBCA, VPS29, GNAI3, PSME1) are identified, among which CD33 was positively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. TBCA and VPS29 were negatively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. GNAI3 and PSME1 were negatively associated with the main outcome traits of AD, as well as with LOAD, but had no significant causal association with EOAD. The findings of our research advance our understanding of the etiology of AD.
-
- Epidemiology and Global Health
Artificially sweetened beverages containing noncaloric monosaccharides were suggested as healthier alternatives to sugar-sweetened beverages. Nevertheless, the potential detrimental effects of these noncaloric monosaccharides on blood vessel function remain inadequately understood. We have established a zebrafish model that exhibits significant excessive angiogenesis induced by high glucose, resembling the hyperangiogenic characteristics observed in proliferative diabetic retinopathy (PDR). Utilizing this model, we observed that glucose and noncaloric monosaccharides could induce excessive formation of blood vessels, especially intersegmental vessels (ISVs). The excessively branched vessels were observed to be formed by ectopic activation of quiescent endothelial cells (ECs) into tip cells. Single-cell transcriptomic sequencing analysis of the ECs in the embryos exposed to high glucose revealed an augmented ratio of capillary ECs, proliferating ECs, and a series of upregulated proangiogenic genes. Further analysis and experiments validated that reduced foxo1a mediated the excessive angiogenesis induced by monosaccharides via upregulating the expression of marcksl1a. This study has provided new evidence showing the negative effects of noncaloric monosaccharides on the vascular system and the underlying mechanisms.