Neuronal sequences during theta rely on behavior-dependent spatial maps

  1. Eloy Parra-Barrero
  2. Kamran Diba
  3. Sen Cheng  Is a corresponding author
  1. Ruhr University Bochum, Germany
  2. University of Michigan, United States

Abstract

Navigation through space involves learning and representing relationships between past, current and future locations. In mammals, this might rely on the hippocampal theta phase code, where in each cycle of the theta oscillation, spatial representations provided by neuronal sequences start behind the animal's true location and then sweep forward. However, the exact relationship between theta phase, represented position and true location remains unclear and even paradoxical. Here, we formalize previous notions of 'spatial' or 'temporal' theta sweeps that have appeared in the literature. We analyze single-cell and population variables in unit recordings from rat CA1 place cells and compare them to model simulations based on each of these schemes. We show that neither spatial nor temporal sweeps quantitatively accounts for how all relevant variables change with running speed. To reconcile these schemes with our observations, we introduce 'behavior-dependent' sweeps, in which theta sweep length and place field properties, such as size and phase precession, vary across the environment depending on the running speed characteristic of each location. These behavior-dependent spatial maps provide a structured heterogeneity that is essential for understanding the hippocampal code.

Data availability

No new data was generated for this study. All analysis code has been made available at https://github.com/sencheng/models-and-analysis-of-theta-phase-coding

The following previously published data sets were used

Article and author information

Author details

  1. Eloy Parra-Barrero

    Ruhr University Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Kamran Diba

    Department of Anesthesiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5128-4478
  3. Sen Cheng

    Ruhr University Bochum, Bochum, Germany
    For correspondence
    sen.cheng@rub.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6719-8029

Funding

German Research Foundation (419037518 - FOR 2812,P2)

  • Sen Cheng

German Federal Ministry of Education and Research (01GQ1506)

  • Sen Cheng

National Institute of Mental Health (NIMH R01MH109170)

  • Kamran Diba

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Laura L Colgin, University of Texas at Austin, United States

Version history

  1. Preprint posted: April 14, 2021 (view preprint)
  2. Received: May 12, 2021
  3. Accepted: October 15, 2021
  4. Accepted Manuscript published: October 18, 2021 (version 1)
  5. Version of Record published: November 3, 2021 (version 2)

Copyright

© 2021, Parra-Barrero et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,564
    views
  • 249
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eloy Parra-Barrero
  2. Kamran Diba
  3. Sen Cheng
(2021)
Neuronal sequences during theta rely on behavior-dependent spatial maps
eLife 10:e70296.
https://doi.org/10.7554/eLife.70296

Share this article

https://doi.org/10.7554/eLife.70296

Further reading

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.

    1. Neuroscience
    Avani Koparkar, Timothy L Warren ... Lena Veit
    Research Article

    Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC’s recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by ‘breaks’ in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.