Plasticity of olfactory bulb inputs mediated by dendritic NMDA-spikes in rodent piriform cortex

  1. Amit Kumar
  2. Edi Barkai
  3. Jackie Schiller  Is a corresponding author
  1. Technion-Israel Institute of Technology, Israel
  2. University of Haifa, Israel

Abstract

The piriform cortex (PCx) is essential for learning of odor information. The current view postulates odor learning in the PCx is mainly due to plasticity in intracortical (IC) synapses, while odor information from the olfactory bulb carried via the lateral olfactory tract (LOT) is 'hardwired'. Here we revisit this notion by studying location and pathway dependent plasticity rules. We find that in contrast to the prevailing view, synaptic and optogenetically activated LOT synapses undergo strong and robust long-term potentiation (LTP) mediated by only few local NMDA-spikes delivered at theta frequency, while global spike timing dependent plasticity protocols (STDP) failed to induce LTP in these distal synapses. In contrast, IC synapses in apical and basal dendrites undergo plasticity with both NMDA-spikes and STDP protocols but to a smaller extent compared with LOT synapses. These results are consistent with a self-potentiating mechanism of odor information via NMDA-spikes which can form branch-specific memory traces of odors that can further associate with contextual IC information via STDP mechanisms to provide cognitive and emotional value to odors.

Data availability

The data generated or analysed during this study are included in the manuscript and Supporting files for Figure 1C-G, Figure 2B,D, Figure 3B,D, F-H, Figure 4 B,D, Figure 5B-D, Figure 6 C-D and Figure 7 B-F, are loaded.

Article and author information

Author details

  1. Amit Kumar

    Department of Physiology, Technion-Israel Institute of Technology, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0674-3641
  2. Edi Barkai

    Department of Neurobiology, University of Haifa, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7325-4269
  3. Jackie Schiller

    Department of Physiology, Technion-Israel Institute of Technology, Haifa, Israel
    For correspondence
    jackie@technion.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9182-7166

Funding

Israel Science Foundation

  • Jackie Schiller

Prince Center for Neurodegenerative Diseases

  • Jackie Schiller

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Katalin Toth, University of Ottawa, Canada

Ethics

Animal experimentation: All animal procedures were done in accordance with guidelines established by NIH on the care and use of animals in research and were confirmed by the Technion Institutional Animal Care and Use Committee (Permit number IL-012-01-18).

Version history

  1. Received: May 14, 2021
  2. Preprint posted: May 25, 2021 (view preprint)
  3. Accepted: October 25, 2021
  4. Accepted Manuscript published: October 26, 2021 (version 1)
  5. Version of Record published: November 8, 2021 (version 2)

Copyright

© 2021, Kumar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,270
    views
  • 256
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Amit Kumar
  2. Edi Barkai
  3. Jackie Schiller
(2021)
Plasticity of olfactory bulb inputs mediated by dendritic NMDA-spikes in rodent piriform cortex
eLife 10:e70383.
https://doi.org/10.7554/eLife.70383

Share this article

https://doi.org/10.7554/eLife.70383