Cryo-EM reveals new species-specific proteins and symmetry elements in the Legionella pneumophila Dot/Icm T4SS

  1. Michael J Sheedlo
  2. Clarissa L Durie
  3. Jeong Min Chung
  4. Louise Chang
  5. Jacquelyn Roberts
  6. Michele Swanson
  7. Dana Borden Lacy
  8. Melanie D Ohi  Is a corresponding author
  1. Vanderbilt University Medical Center, United States
  2. University Of Michigan, United States
  3. University of Michigan, United States
  4. Vanderbilt University School of Medicine, United States

Abstract

Legionella pneumophila is an opportunistic pathogen that causes the potentially fatal pneumonia known as Legionnaires' Disease. The pathology associated with infection depends on bacterial delivery of effector proteins into the host via the membrane spanning Dot/Icm type IV secretion system (T4SS). We have determined sub-3.0 Å resolution maps of the Dot/Icm T4SS core complex by single particle cryo-EM. The high-resolution structural analysis has allowed us to identify proteins encoded outside the Dot/Icm genetic locus that contribute to the core T4SS structure. We can also now define two distinct areas of symmetry mismatch, one that connects the C18 periplasmic ring (PR) and the C13 outer membrane cap (OMC) and one that connects the C13 OMC with a 16-fold symmetric dome. Unexpectedly the connection between the PR and OMC is DotH, with five copies sandwiched between the OMC and PR to accommodate the symmetry mismatch. Finally, we observe multiple conformations in the reconstructions that indicate flexibility within the structure.

Data availability

All models and maps have been uploaded to the PDB and the EMDB under accession numbers: PDB 7MUD (EMDB 24005), PDB 7MUE (EMDB 24006), PDB 7MUC (EMDB 24004), PDB 7MUQ (EMDB 24018), PDB 7MUS (EMDB 24020), PDB 7MUV (EMDB 24023), PDB 7MUW (EMDB 24024), PDB 7MUY (EMDB 24026)

Article and author information

Author details

  1. Michael J Sheedlo

    Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3185-1727
  2. Clarissa L Durie

    Life Sciences Institute, University Of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4027-4386
  3. Jeong Min Chung

    Life Sciences Institute, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4285-8764
  4. Louise Chang

    Life Sciences Institute, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jacquelyn Roberts

    Life Sciences Institute, University Of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Michele Swanson

    Department of Microbiology & Immunology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2542-0266
  7. Dana Borden Lacy

    Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nasvhille, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2273-8121
  8. Melanie D Ohi

    Life Sciences Institute, University Of Michigan, Ann Arbor, United States
    For correspondence
    mohi@umich.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1750-4793

Funding

National Institute of Allergy and Infectious Diseases (R01AI118932)

  • Jeong Min Chung
  • Jacquelyn Roberts
  • Dana Borden Lacy
  • Melanie D Ohi

National Institute of Allergy and Infectious Diseases (R21AI6465)

  • Michele Swanson
  • Melanie D Ohi

National Science Foundation

  • Jacquelyn Roberts

National Institute of Allergy and Infectious Diseases (F32 AI150027)

  • Clarissa L Durie

National Institute of Diabetes and Digestive and Kidney Diseases (T32DK007673)

  • Michael J Sheedlo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Edward H Egelman, University of Virginia, United States

Version history

  1. Received: May 16, 2021
  2. Preprint posted: June 18, 2021 (view preprint)
  3. Accepted: September 14, 2021
  4. Accepted Manuscript published: September 14, 2021 (version 1)
  5. Version of Record published: October 1, 2021 (version 2)

Copyright

© 2021, Sheedlo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,182
    Page views
  • 259
    Downloads
  • 13
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael J Sheedlo
  2. Clarissa L Durie
  3. Jeong Min Chung
  4. Louise Chang
  5. Jacquelyn Roberts
  6. Michele Swanson
  7. Dana Borden Lacy
  8. Melanie D Ohi
(2021)
Cryo-EM reveals new species-specific proteins and symmetry elements in the Legionella pneumophila Dot/Icm T4SS
eLife 10:e70427.
https://doi.org/10.7554/eLife.70427

Share this article

https://doi.org/10.7554/eLife.70427

Further reading

    1. Microbiology and Infectious Disease
    2. Physics of Living Systems
    Ray Chang, Ari Davydov ... Manu Prakash
    Research Article

    Microsporidia are eukaryotic, obligate intracellular parasites that infect a wide range of hosts, leading to health and economic burdens worldwide. Microsporidia use an unusual invasion organelle called the polar tube (PT), which is ejected from a dormant spore at ultra-fast speeds, to infect host cells. The mechanics of PT ejection are impressive. Anncaliia algerae microsporidia spores (3–4 μm in size) shoot out a 100-nm-wide PT at a speed of 300 μm/s, creating a shear rate of 3000 s-1. The infectious cargo, which contains two nuclei, is shot through this narrow tube for a distance of ∼60–140 μm (Jaroenlak et al, 2020) and into the host cell. Considering the large hydraulic resistance in an extremely thin tube and the low-Reynolds-number nature of the process, it is not known how microsporidia can achieve this ultrafast event. In this study, we use Serial Block-Face Scanning Electron Microscopy to capture 3-dimensional snapshots of A. algerae spores in different states of the PT ejection process. Grounded in these data, we propose a theoretical framework starting with a systematic exploration of possible topological connectivity amongst organelles, and assess the energy requirements of the resulting models. We perform PT firing experiments in media of varying viscosity, and use the results to rank our proposed hypotheses based on their predicted energy requirement. We also present a possible mechanism for cargo translocation, and quantitatively compare our predictions to experimental observations. Our study provides a comprehensive biophysical analysis of the energy dissipation of microsporidian infection process and demonstrates the extreme limits of cellular hydraulics.

    1. Microbiology and Infectious Disease
    Hui Han, Rong-Hua Luo ... Cheng-Gang Zou
    Research Article

    Angiotensin-converting enzyme 2 (ACE2) is a major cell entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The induction of ACE2 expression may serve as a strategy by SARS-CoV-2 to facilitate its propagation. However, the regulatory mechanisms of ACE2 expression after viral infection remain largely unknown. Using 45 different luciferase reporters, the transcription factors SP1 and HNF4α were found to positively and negatively regulate ACE2 expression, respectively, at the transcriptional level in human lung epithelial cells (HPAEpiCs). SARS-CoV-2 infection increased the transcriptional activity of SP1 while inhibiting that of HNF4α. The PI3K/AKT signaling pathway, activated by SARS-CoV-2 infection, served as a crucial regulatory node, inducing ACE2 expression by enhancing SP1 phosphorylation—a marker of its activity—and reducing the nuclear localization of HNF4α. However, colchicine treatment inhibited the PI3K/AKT signaling pathway, thereby suppressing ACE2 expression. In Syrian hamsters (Mesocricetus auratus) infected with SARS-CoV-2, inhibition of SP1 by either mithramycin A or colchicine resulted in reduced viral replication and tissue injury. In summary, our study uncovers a novel function of SP1 in the regulation of ACE2 expression and identifies SP1 as a potential target to reduce SARS-CoV-2 infection.