The enteric pathogen Cryptosporidium parvum exports proteins into the cytosol of the infected host cell

  1. Jennifer E Dumaine
  2. Adam Sateriale
  3. Alexis R Gibson
  4. Amita G Reddy
  5. Jodi A Gullicksrud
  6. Emma N Hunter
  7. Joseph T Clark
  8. Boris Striepen  Is a corresponding author
  1. University of Pennsylvania, United States
  2. The Francis Crick Institute, United Kingdom
  3. University of Georgia, United States

Abstract

The parasite Cryptosporidium is responsible for diarrheal disease in young children causing death, malnutrition, and growth delay. Cryptosporidium invades enterocytes where it develops in a unique intracellular niche. Infected cells exhibit profound changes in morphology, physiology and transcriptional activity. How the parasite effects these changes is poorly understood. We explored the localization of highly polymorphic proteins and found members of the C. parvum MEDLE protein family to be translocated into the cytosol of infected cells. All intracellular life stages engage in this export, which occurs after completion of invasion. Mutational studies defined an N-terminal host-targeting motif and demonstrated proteolytic processing at a specific leucine residue. Direct expression of MEDLE2 in mammalian cells triggered an ER stress response, which was also observed during infection. Taken together, our studies reveal the presence of a Cryptosporidium secretion system capable of delivering parasite proteins into the infected enterocyte.

Data availability

The RNA sequencing dataset generated from the MEDLE2 transfection experiment has been deposited in GEO under accession number GSE174117. Source code and data files for this dataset were provided. Furthermore, numerical source data used for imaging quantification experiments in Figures 2 and 3 were provided.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Jennifer E Dumaine

    Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Adam Sateriale

    The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexis R Gibson

    Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1078-4841
  4. Amita G Reddy

    Franklin College of Arts and Science, University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jodi A Gullicksrud

    Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Emma N Hunter

    Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Joseph T Clark

    Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Boris Striepen

    Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States
    For correspondence
    striepen@upenn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7426-432X

Funding

National Institute of Allergy and Infectious Diseases (R01AI127798)

  • Boris Striepen

National Institute of Allergy and Infectious Diseases (R01AI112427)

  • Boris Striepen

National Institute of Allergy and Infectious Diseases (T32AI007532)

  • Jennifer E Dumaine

National Institute of Allergy and Infectious Diseases (K99AI137442)

  • Adam Sateriale

National Institute of Allergy and Infectious Diseases (T32A1055400)

  • Jodi A Gullicksrud

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animals used in this study were handled and cared for in accordance with approved Institutional Animal Care and Use Committee protocols at the University of Georgia (protocol A2016 01-028-Y1-A4) and the University of Pennsylvania (protocol #806292).

Copyright

© 2021, Dumaine et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,723
    views
  • 403
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jennifer E Dumaine
  2. Adam Sateriale
  3. Alexis R Gibson
  4. Amita G Reddy
  5. Jodi A Gullicksrud
  6. Emma N Hunter
  7. Joseph T Clark
  8. Boris Striepen
(2021)
The enteric pathogen Cryptosporidium parvum exports proteins into the cytosol of the infected host cell
eLife 10:e70451.
https://doi.org/10.7554/eLife.70451

Share this article

https://doi.org/10.7554/eLife.70451

Further reading

    1. Microbiology and Infectious Disease
    Mehak Zahoor Khan, Debbie M Hunt ... Vinay Kumar Nandicoori
    Research Article

    Mycobacterium tuberculosis’s (Mtb) autarkic lifestyle within the host involves rewiring its transcriptional networks to combat host-induced stresses. With the help of RNA sequencing performed under various stress conditions, we identified that genes belonging to Mtb sulfur metabolism pathways are significantly upregulated during oxidative stress. Using an integrated approach of microbial genetics, transcriptomics, metabolomics, animal experiments, chemical inhibition, and rescue studies, we investigated the biological role of non-canonical L-cysteine synthases, CysM and CysK2. While transcriptome signatures of RvΔcysM and RvΔcysK2 appear similar under regular growth conditions, we observed unique transcriptional signatures when subjected to oxidative stress. We followed pool size and labelling (34S) of key downstream metabolites, viz. mycothiol and ergothioneine, to monitor L-cysteine biosynthesis and utilization. This revealed the significant role of distinct L-cysteine biosynthetic routes on redox stress and homeostasis. CysM and CysK2 independently facilitate Mtb survival by alleviating host-induced redox stress, suggesting they are not fully redundant during infection. With the help of genetic mutants and chemical inhibitors, we show that CysM and CysK2 serve as unique, attractive targets for adjunct therapy to combat mycobacterial infection.

    1. Microbiology and Infectious Disease
    2. Physics of Living Systems
    Tingting Yang, Marko S Chavez ... Mohamed Y El-Naggar
    Research Article

    Filamentous multicellular cable bacteria perform centimeter-scale electron transport in a process that couples oxidation of an electron donor (sulfide) in deeper sediment to the reduction of an electron acceptor (oxygen or nitrate) near the surface. While this electric metabolism is prevalent in both marine and freshwater sediments, detailed electronic measurements of the conductivity previously focused on the marine cable bacteria (Candidatus Electrothrix), rather than freshwater cable bacteria, which form a separate genus (Candidatus Electronema) and contribute essential geochemical roles in freshwater sediments. Here, we characterize the electron transport characteristics of Ca. Electronema cable bacteria from Southern California freshwater sediments. Current–voltage measurements of intact cable filaments bridging interdigitated electrodes confirmed their persistent conductivity under a controlled atmosphere and the variable sensitivity of this conduction to air exposure. Electrostatic and conductive atomic force microscopies mapped out the characteristics of the cell envelope’s nanofiber network, implicating it as the conductive pathway in a manner consistent with previous findings in marine cable bacteria. Four-probe measurements of microelectrodes addressing intact cables demonstrated nanoampere currents up to 200 μm lengths at modest driving voltages, allowing us to quantify the nanofiber conductivity at 0.1 S/cm for freshwater cable bacteria filaments under our measurement conditions. Such a high conductivity can support the remarkable sulfide-to-oxygen electrical currents mediated by cable bacteria in sediments. These measurements expand the knowledgebase of long-distance electron transport to the freshwater niche while shedding light on the underlying conductive network of cable bacteria.