The enteric pathogen Cryptosporidium parvum exports proteins into the cytosol of the infected host cell

  1. Jennifer E Dumaine
  2. Adam Sateriale
  3. Alexis R Gibson
  4. Amita G Reddy
  5. Jodi A Gullicksrud
  6. Emma N Hunter
  7. Joseph T Clark
  8. Boris Striepen  Is a corresponding author
  1. University of Pennsylvania, United States
  2. The Francis Crick Institute, United Kingdom
  3. University of Georgia, United States

Abstract

The parasite Cryptosporidium is responsible for diarrheal disease in young children causing death, malnutrition, and growth delay. Cryptosporidium invades enterocytes where it develops in a unique intracellular niche. Infected cells exhibit profound changes in morphology, physiology and transcriptional activity. How the parasite effects these changes is poorly understood. We explored the localization of highly polymorphic proteins and found members of the C. parvum MEDLE protein family to be translocated into the cytosol of infected cells. All intracellular life stages engage in this export, which occurs after completion of invasion. Mutational studies defined an N-terminal host-targeting motif and demonstrated proteolytic processing at a specific leucine residue. Direct expression of MEDLE2 in mammalian cells triggered an ER stress response, which was also observed during infection. Taken together, our studies reveal the presence of a Cryptosporidium secretion system capable of delivering parasite proteins into the infected enterocyte.

Data availability

The RNA sequencing dataset generated from the MEDLE2 transfection experiment has been deposited in GEO under accession number GSE174117. Source code and data files for this dataset were provided. Furthermore, numerical source data used for imaging quantification experiments in Figures 2 and 3 were provided.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Jennifer E Dumaine

    Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Adam Sateriale

    The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexis R Gibson

    Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1078-4841
  4. Amita G Reddy

    Franklin College of Arts and Science, University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jodi A Gullicksrud

    Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Emma N Hunter

    Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Joseph T Clark

    Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Boris Striepen

    Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States
    For correspondence
    striepen@upenn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7426-432X

Funding

National Institute of Allergy and Infectious Diseases (R01AI127798)

  • Boris Striepen

National Institute of Allergy and Infectious Diseases (R01AI112427)

  • Boris Striepen

National Institute of Allergy and Infectious Diseases (T32AI007532)

  • Jennifer E Dumaine

National Institute of Allergy and Infectious Diseases (K99AI137442)

  • Adam Sateriale

National Institute of Allergy and Infectious Diseases (T32A1055400)

  • Jodi A Gullicksrud

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animals used in this study were handled and cared for in accordance with approved Institutional Animal Care and Use Committee protocols at the University of Georgia (protocol A2016 01-028-Y1-A4) and the University of Pennsylvania (protocol #806292).

Copyright

© 2021, Dumaine et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,129
    views
  • 422
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jennifer E Dumaine
  2. Adam Sateriale
  3. Alexis R Gibson
  4. Amita G Reddy
  5. Jodi A Gullicksrud
  6. Emma N Hunter
  7. Joseph T Clark
  8. Boris Striepen
(2021)
The enteric pathogen Cryptosporidium parvum exports proteins into the cytosol of the infected host cell
eLife 10:e70451.
https://doi.org/10.7554/eLife.70451

Share this article

https://doi.org/10.7554/eLife.70451

Further reading

    1. Microbiology and Infectious Disease
    Dawid S Zyla
    Insight

    A combination of imaging techniques reveals how herpes simplex virus type 1 assembles within infected cells, highlighting the roles of essential viral proteins in viral assembly and exit.

    1. Microbiology and Infectious Disease
    Dhaval Ghone, Edward L Evans ... Aussie Suzuki
    Research Article

    Virion Infectivity Factor (Vif) of the Human Immunodeficiency Virus type 1 (HIV-1) targets and degrades cellular APOBEC3 proteins, key regulators of intrinsic and innate antiretroviral immune responses, thereby facilitating HIV-1 infection. While Vif’s role in degrading APOBEC3G is well-studied, Vif is also known to cause cell cycle arrest, but the detailed nature of Vif’s effects on the cell cycle has yet to be delineated. In this study, we employed high-temporal resolution single-cell live imaging and super-resolution microscopy to monitor individual cells during Vif-induced cell cycle arrest. Our findings reveal that Vif does not affect the G2/M boundary as previously thought. Instead, Vif triggers a unique and robust pseudo-metaphase arrest, distinct from the mild prometaphase arrest induced by Vpr. During this arrest, chromosomes align properly and form the metaphase plate, but later lose alignment, resulting in polar chromosomes. Notably, Vif, unlike Vpr, significantly reduces the levels of both Protein Phosphatase 1 (PP1) and 2 A (PP2A) at kinetochores, which regulate chromosome-microtubule interactions. These results unveil a novel role for Vif in kinetochore regulation that governs the spatial organization of chromosomes during mitosis.