Robust effects of corticothalamic feedback and behavioral state on movie responses in mouse dLGN

Abstract

Neurons in the dorsolateral geniculate nucleus (dLGN) of the thalamus receive a substantial proportion of modulatory inputs from corticothalamic (CT) feedback and brain stem nuclei. Hypothesizing that these modulatory influences might be differentially engaged depending on the visual stimulus and behavioral state, we performed in vivo extracellular recordings from mouse dLGN while optogenetically suppressing CT feedback and monitoring behavioral state by locomotion and pupil dilation. For naturalistic movie clips, we found CT feedback to consistently increase dLGN response gain and promote tonic firing. In contrast, for gratings, CT feedback effects on firing rates were mixed. For both stimulus types, the neural signatures of CT feedback closely resembled those of behavioral state, yet effects of behavioral state on responses to movies persisted even when CT feedback was suppressed. We conclude that CT feedback modulates visual information on its way to cortex in a stimulus-dependent manner, but largely independently of behavioral state.

Data availability

Data and source code used to generate the figures in the manuscript has been made available on Dryad (https://doi.org/10.5061/dryad.xgxd254j7).

The following data sets were generated

Article and author information

Author details

  1. Martin A Spacek

    Division of Neurobiology, LMU Munich, Planegg-Martinsried, Germany
    For correspondence
    m.spacek@lmu.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9519-3284
  2. Davide Crombie

    Division of Neurobiology, LMU Munich, Planegg-Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Yannik Bauer

    Division of Neurobiology, LMU Munich, Planegg-Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2613-6443
  4. Gregory Born

    Division of Neurobiology, LMU Munich, Planegg-Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0430-3052
  5. Xinyu Liu

    Division of Neurobiology, LMU Munich, Planegg-Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Steffen Katzner

    Division of Neurobiology, LMU Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Laura Busse

    Division of Neurobiology, LMU Munich, Planegg-Martinsried, Germany
    For correspondence
    busse@bio.lmu.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6127-7754

Funding

Deutsche Forschungsgemeinschaft (Robust Vision: Inference Principles and Neural Mechanisms,TP 13,project number: 276693517)

  • Laura Busse

Deutsche Forschungsgemeinschaft (SFB 870 TP 19,project number 118803580)

  • Laura Busse

Deutsche Forschungsgemeinschaft (DFG BU 1808/5-1)

  • Laura Busse

Joachim Herz Stiftung (add-on fellowship)

  • Gregory Born

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures complied with the European Communities Council Directive 2010/63/ECand the German Law for Protection of Animals, and were approved by local authorities,following appropriate ethics review.

Copyright

© 2022, Spacek et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,206
    views
  • 368
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Martin A Spacek
  2. Davide Crombie
  3. Yannik Bauer
  4. Gregory Born
  5. Xinyu Liu
  6. Steffen Katzner
  7. Laura Busse
(2022)
Robust effects of corticothalamic feedback and behavioral state on movie responses in mouse dLGN
eLife 11:e70469.
https://doi.org/10.7554/eLife.70469

Share this article

https://doi.org/10.7554/eLife.70469