Calsyntenin-3, an atypical cadherin, suppresses inhibitory synapses but increases excitatory parallel-fiber synapses in cerebellum

  1. Zhihui Liu  Is a corresponding author
  2. Man Jiang
  3. Kif Liakath-Ali
  4. Alessandra Sclip
  5. Jaewon Ko
  6. Roger Shen Zhang
  7. Thomas C Südhof  Is a corresponding author
  1. Howard Hughes Medical Institute, Stanford University, United States
  2. Huazhong University of Science and Technology, China
  3. Stanford University, United States
  4. Daegu Gyeongbuk Institute of Science and Technology, Republic of Korea

Abstract

Cadherins contribute to the organization of nearly all tissues, but the functions of several evolutionarily conserved cadherins, including those of calsyntenins, remain enigmatic. Puzzlingly, two distinct, non-overlapping functions for calsyntenins were proposed: As postsynaptic neurexin ligands in synapse formation, or as presynaptic kinesin adaptors in vesicular transport. Here, we show that, surprisingly, acute CRISPR-mediated deletion of calsyntenin-3 in mouse cerebellum in vivo causes a large decrease in inhibitory synapse, but a robust increase in excitatory parallel-fiber synapses in Purkinje cells. As a result, inhibitory synaptic transmission was suppressed, whereas parallel-fiber synaptic transmission was enhanced in Purkinje cells by the calsyntenin-3 deletion. No changes in the dendritic architecture of Purkinje cells or in climbing-fiber synapses were detected. Sparse selective deletion of calsyntenin-3 only in Purkinje cells recapitulated the synaptic phenotype, indicating that calsyntenin-3 acts by a cell-autonomous postsynaptic mechanism in cerebellum. Thus, by promoting formation of excitatory parallel-fiber synapses and decreasing formation of inhibitory synapses in the same neuron, calsyntenin-3 functions as a postsynaptic adhesion molecule that regulates the excitatory/inhibitory balance in Purkinje cells.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. All numerical data have been provided in a zipped folder.

The following previously published data sets were used

Article and author information

Author details

  1. Zhihui Liu

    Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Palo Alto, United States
    For correspondence
    zhihuil@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9198-9090
  2. Man Jiang

    Department of Physiology, Huazhong University of Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0470-8722
  3. Kif Liakath-Ali

    Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9047-7424
  4. Alessandra Sclip

    Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9313-4176
  5. Jaewon Ko

    Department of Brain and Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9184-1574
  6. Roger Shen Zhang

    Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Thomas C Südhof

    Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    For correspondence
    tcs1@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3361-9275

Funding

National Institute of Mental Health (MH052804)

  • Thomas C Südhof

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gary L Westbrook, Oregon Health and Science University, United States

Ethics

Animal experimentation: All animal experiments: All protocols were carried out under the National Institutes of Health Guidelines for the Care and Use of Laboratory Animals and were approved by the Administrative Panel on Laboratory Animal Care (APLAC) at Stanford University and institutional animal care and use committee (IACUC). The animal protocol #20787 was approved by Stanford University APLAC and IACUC. All surgeries were performed under avertin anesthesia and carprofen analgesia, and every effort was made to minimize suffering, pain, and distress.

Version history

  1. Received: May 25, 2021
  2. Preprint posted: May 31, 2021 (view preprint)
  3. Accepted: April 14, 2022
  4. Accepted Manuscript published: April 14, 2022 (version 1)
  5. Accepted Manuscript updated: April 21, 2022 (version 2)
  6. Version of Record published: May 3, 2022 (version 3)

Copyright

© 2022, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,644
    views
  • 339
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhihui Liu
  2. Man Jiang
  3. Kif Liakath-Ali
  4. Alessandra Sclip
  5. Jaewon Ko
  6. Roger Shen Zhang
  7. Thomas C Südhof
(2022)
Calsyntenin-3, an atypical cadherin, suppresses inhibitory synapses but increases excitatory parallel-fiber synapses in cerebellum
eLife 11:e70664.
https://doi.org/10.7554/eLife.70664

Share this article

https://doi.org/10.7554/eLife.70664

Further reading

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.

    1. Neuroscience
    Avani Koparkar, Timothy L Warren ... Lena Veit
    Research Article

    Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC’s recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by ‘breaks’ in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.