Astrocyte GluN2C NMDA receptors control basal synaptic strengths of hippocampal CA1 pyramidal neurons in the stratum radiatum

  1. Peter H Chipman
  2. Chi Chung Alan Fung
  3. Alejandra Pazo Fernandez
  4. Abhilash Sawant
  5. Angelo Tedoldi
  6. Atsushi Kawai
  7. Sunita Ghimire Gautam
  8. Mizuki Kurosawa
  9. Manabu Abe
  10. Kenji Sakimura
  11. Tomoki Fukai
  12. Yukiko Goda  Is a corresponding author
  1. RIKEN, Japan
  2. Okinawa Institute of Science and Technology Graduate University, Japan
  3. Brain Research Institute, Niigata University, Japan
  4. Niigata University, Japan

Abstract

Experience-dependent plasticity is a key feature of brain synapses for which neuronal N-Methyl-D-Aspartate receptors (NMDARs) play a major role, from developmental circuit refinement to learning and memory. Astrocytes also express NMDARs although their exact function has remained controversial. Here we identify in mouse hippocampus, a circuit function for GluN2C NMDAR, a subtype highly expressed in astrocytes, in layer-specific tuning of synaptic strengths in CA1 pyramidal neurons. Interfering with astrocyte NMDAR or GluN2C NMDAR activity reduces the range of presynaptic strength distribution specifically in the stratum radiatum inputs without an appreciable change in the mean presynaptic strength. Mathematical modeling shows that narrowing of the width of presynaptic release probability distribution compromises the expression of long-term synaptic plasticity. Our findings suggest a novel feedback signaling system that uses astrocyte GluN2C NMDARs to adjust basal synaptic weight distribution of Schaffer collateral inputs, which in turn impacts computations performed by the CA1 pyramidal neuron.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 3 and 4.

Article and author information

Author details

  1. Peter H Chipman

    RIKEN, Wako-shi, Saitama, Japan
    Competing interests
    No competing interests declared.
  2. Chi Chung Alan Fung

    Okinawa Institute of Science and Technology Graduate University, Onna-son, Kunigami-gun, Japan
    Competing interests
    No competing interests declared.
  3. Alejandra Pazo Fernandez

    RIKEN, Wako-shi, Saitama, Japan
    Competing interests
    No competing interests declared.
  4. Abhilash Sawant

    RIKEN, Wako-shi, Saitama, Japan
    Competing interests
    No competing interests declared.
  5. Angelo Tedoldi

    RIKEN, Wako-shi, Saitama, Japan
    Competing interests
    No competing interests declared.
  6. Atsushi Kawai

    RIKEN, Wako-shi, Saitama, Japan
    Competing interests
    No competing interests declared.
  7. Sunita Ghimire Gautam

    RIKEN, Wako-shi, Saitama, Japan
    Competing interests
    No competing interests declared.
  8. Mizuki Kurosawa

    RIKEN, Wako-shi, Saitama, Japan
    Competing interests
    No competing interests declared.
  9. Manabu Abe

    Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
    Competing interests
    No competing interests declared.
  10. Kenji Sakimura

    Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
    Competing interests
    No competing interests declared.
  11. Tomoki Fukai

    Okinawa Institute of Science and Technology Graduate University, Onna-son, Kunigami-gun, Japan
    Competing interests
    No competing interests declared.
  12. Yukiko Goda

    RIKEN, Wako-shi, Saitama, Japan
    For correspondence
    yukiko.goda@riken.jp
    Competing interests
    Yukiko Goda, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0352-9498

Funding

Japan Society for the Promotion of Science (Overseas Research Fellow (P14760))

  • Peter H Chipman

Japan Society for the Promotion of Science (Core-to-Core Program (JPJSCCA20170008))

  • Yukiko Goda

MEXT Grants in Aid for Scientific Research (15H04280)

  • Yukiko Goda

MEXT Grants in Aid for Scientific Research (18H05213)

  • Tomoki Fukai

RIKEN Center for Brain Science

  • Yukiko Goda

Uehara Memorial Foundation

  • Yukiko Goda

Japan AMED Brain/MINDS

  • Yukiko Goda

MEXT Grants in Aid for Scientific Research (19K16885)

  • Chi Chung Alan Fung

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were approved by the RIKEN Animal Experiments Committee and performed in accordance with the RIKEN rules and guidelines. [Animal Experiment Plan Approval no. W2021-2-015(2)]

Copyright

© 2021, Chipman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,072
    views
  • 517
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Peter H Chipman
  2. Chi Chung Alan Fung
  3. Alejandra Pazo Fernandez
  4. Abhilash Sawant
  5. Angelo Tedoldi
  6. Atsushi Kawai
  7. Sunita Ghimire Gautam
  8. Mizuki Kurosawa
  9. Manabu Abe
  10. Kenji Sakimura
  11. Tomoki Fukai
  12. Yukiko Goda
(2021)
Astrocyte GluN2C NMDA receptors control basal synaptic strengths of hippocampal CA1 pyramidal neurons in the stratum radiatum
eLife 10:e70818.
https://doi.org/10.7554/eLife.70818

Share this article

https://doi.org/10.7554/eLife.70818

Further reading

    1. Neuroscience
    Eun Joo Kim, Mi-Seon Kong ... Jeansok John Kim
    Research Article

    Pavlovian fear conditioning research suggests that the interaction between the dorsal periaqueductal gray (dPAG) and basolateral amygdala (BLA) acts as a prediction error mechanism in the formation of associative fear memories. However, their roles in responding to naturalistic predatory threats, characterized by less explicit cues and the absence of reiterative trial-and-error learning events, remain unexplored. In this study, we conducted single-unit recordings in rats during an ‘approach food-avoid predator’ task, focusing on the responsiveness of dPAG and BLA neurons to a rapidly approaching robot predator. Optogenetic stimulation of the dPAG triggered fleeing behaviors and increased BLA activity in naive rats. Notably, BLA neurons activated by dPAG stimulation displayed immediate responses to the robot, demonstrating heightened synchronous activity compared to BLA neurons that did not respond to dPAG stimulation. Additionally, the use of anterograde and retrograde tracer injections into the dPAG and BLA, respectively, coupled with c-Fos activation in response to predatory threats, indicates that the midline thalamus may play an intermediary role in innate antipredatory-defensive functioning.

    1. Neuroscience
    Yangang Li, Xinyun Zhu ... Yueming Wang
    Research Article

    In motor cortex, behaviorally relevant neural responses are entangled with irrelevant signals, which complicates the study of encoding and decoding mechanisms. It remains unclear whether behaviorally irrelevant signals could conceal some critical truth. One solution is to accurately separate behaviorally relevant and irrelevant signals at both single-neuron and single-trial levels, but this approach remains elusive due to the unknown ground truth of behaviorally relevant signals. Therefore, we propose a framework to define, extract, and validate behaviorally relevant signals. Analyzing separated signals in three monkeys performing different reaching tasks, we found neural responses previously considered to contain little information actually encode rich behavioral information in complex nonlinear ways. These responses are critical for neuronal redundancy and reveal movement behaviors occupy a higher-dimensional neural space than previously expected. Surprisingly, when incorporating often-ignored neural dimensions, behaviorally relevant signals can be decoded linearly with comparable performance to nonlinear decoding, suggesting linear readout may be performed in motor cortex. Our findings prompt that separating behaviorally relevant signals may help uncover more hidden cortical mechanisms.